MaplePrimes Questions

I saw a presentation Calculus 1 -- I'm pretty sure it was Maple -- that showed how to set up a volume of solid of revolutionvisually rotated the region and looked at it from different points of view.

Is there someplace I could go to find out ho0w to do that.  I am new and in experienced in using Maple.

Thanks in advance.

Tim Wisecarver

Georgetown preparatory School

twisecarver@gprep.org

Hi so im trying to create a loop which allows me to find the first square after this number 
zahl:=1234567: could you guys tell me whats wrong and explain me why it is wrong, i suck at this :/

thank you so much 

zahl:=1234567:
 while sqrt(zahl)<> round(sqrt(zahl)) do  
   zahl:=zahl +1  
     if sqrt(zahl)<> round(sqrt(zahl))then  
  print(zahl):  
 end if:
 end do;

I assume that I'm not providing the correct input to the simplify command to get the simplification that I want.  In particular, for the following code:

assume(n, positive);
simplify(3^(-(1/2)*n)*2^((1/6)*n)-2^((2/3)*n)*6^(-(1/2)*n));
simplify(log(3^(-(1/2)*n)*2^((1/6)*n))-log(2^((2/3)*n)*6^(-(1/2)*n))); 

The expression should evaluate to 0.  However, the first expression does not simplify to 0 (it does not simplify at all in Maple) while the second expression simplifies to 0.

The simplification is fairly easy for the first expression by factoring 6 and combining terms; it seems like I'm not entering the command to simplify in this way.

Hai everyone

may i ask why solution have an error?

hope i have an answer

r

 

NULL

restart

with(plots):

Pr := 6.8:

Eq1 := (101-100*lambda)*(diff(f(eta), `$`(eta, 3)))+f(eta)*(diff(f(eta), `$`(eta, 2)))+2*delta*theta(eta)+2*delta*Nc*gamma(eta)-2*delta*Nr*phi(eta);

(101-100*lambda)*(diff(diff(diff(f(eta), eta), eta), eta))+f(eta)*(diff(diff(f(eta), eta), eta))+2*theta(eta)+2*gamma(eta)-2*phi(eta)

(1)

Eq2 := (101-100*lambda)*(diff(theta(eta), `$`(eta, 2)))+Pr*f(eta)*(diff(theta(eta), eta))+Pr*Nb*(diff(theta(eta), eta))*(diff(phi(eta), eta))+Pr*Nt*(diff(theta(eta), eta))^2;

(101-100*lambda)*(diff(diff(theta(eta), eta), eta))+6.8*f(eta)*(diff(theta(eta), eta))+3.40*(diff(theta(eta), eta))*(diff(phi(eta), eta))+3.40*(diff(theta(eta), eta))^2

(2)

Eq3 := (101-100*lambda)*(diff(phi(eta), `$`(eta, 2)))+Le*f(eta)*(diff(phi(eta), eta))+Nt*(diff(theta(eta), `$`(eta, 2)))/Nb;

(101-100*lambda)*(diff(diff(phi(eta), eta), eta))+.1*f(eta)*(diff(phi(eta), eta))+1.000000000*(diff(diff(theta(eta), eta), eta))

(3)

Eq4 := (101-100*lambda)*(diff(gamma(eta), `$`(eta, 2)))+Sc*s*(diff(theta(eta), `$`(eta, 2)))+Sc*f(eta)*(diff(gamma(eta), eta));

(101-100*lambda)*(diff(diff(gamma(eta), eta), eta))+.30*(diff(diff(theta(eta), eta), eta))+.6*f(eta)*(diff(gamma(eta), eta))

(4)

VBi := [10, 20, 30]:

etainf := 5:

bcs := f(0) = 0, (D(f))(0) = 0, (D(theta))(0) = -Bi*(1-theta(0)), phi(0) = 1, gamma(0) = 1, (D(f))(etainf) = 1, theta(etainf) = 0, phi(etainf) = 0, gamma(etainf) = 0;

f(0) = 0, (D(f))(0) = 0, (D(theta))(0) = -Bi*(1-theta(0)), phi(0) = 1, gamma(0) = 1, (D(f))(5) = 1, theta(5) = 0, phi(5) = 0, gamma(5) = 0

(5)

dsys := {Eq1, Eq2, Eq3, Eq4, bcs}:

for i to 3 do Bi := VBi[i]; dsol[i] := dsolve(dsys, numeric, continuation = lambda); print(Bi); print(dsol[i](0)) end do

Error, (in dsolve/numeric/bvp) cannot determine a suitable initial profile, please specify an approximate initial solution

 

NULL

NULL

 

Download soret.mw

 

 

I want to build a custom component by the material’s stress-strain curve ,for the component signal input is the x(t)(displacement-time curve), then I can simulate the material’s acceleration-time curve,the stress-strain equation , parameter and the custom component I built has been given in the picture,but the x(t) is same as the s[rel](t),so how to solve this problem? Thanks first.

 

 

 

 

 

Hello,

I would like to build a periodic function based on the function x-->x².

For x belonging to [0,2], the function is defined like this :

 

And for the rest of the domain in R, the function should be periodic with a period of 2.

In other words, I would like to define a function which permits me to obtain this plot :

 

Sorry, for my picture which is very ugly, but it should enable to explain what I'm looking for.

1) Is a new piecewise function based on f function is the better solution to create this kind of periodic function ?

2) I didn't find or understand with the help how i can create "infinite" piecewise function. May you help me to define this kind of piecewise function ?

Thanks a lot for your help.

P.S: With the term "nested" in my title I only want to say that I want to apply another piecewise function (for example g) on a already created function (for example f). this term may be not very appropriated.

 

 

i have run higer order nonlinear ode bvp

but cant solve the error

please help me

NULL

restart

with(plots)

Pr := .71; beta := .5; alpha := .1; S := .1; Du := .1; Nb := .1; Nt := .1; Sc := .67; Sr := .1; omega := 1.0; Lb := 1.0; Pe := 1.0; delta := 1.0; Nc := 1.0; p := .1; q := 5; r := 5; s := 5; a := 1; b := 2; epsilon := .1

Eq1 := (101-100*lambda)*(diff(f(eta), `$`(eta, 3)))-theta(eta)*beta*(diff(f(eta), `$`(eta, 2)))/(1+theta(eta)*beta)+(1+theta(eta)*beta)*f(eta)*(diff(f(eta), `$`(eta, 2)))-(1+theta(eta)*beta)*(diff(f(eta), eta))^2-(M-alpha)*(1+theta(eta)*beta)*(diff(f(eta), eta))

(101-100*lambda)*(diff(diff(diff(f(eta), eta), eta), eta))-.5*theta(eta)*(diff(diff(f(eta), eta), eta))/(1+.5*theta(eta))+(1+.5*theta(eta))*f(eta)*(diff(diff(f(eta), eta), eta))-(1+.5*theta(eta))*(diff(f(eta), eta))^2-(M-.1)*(1+.5*theta(eta))*(diff(f(eta), eta))

(1)

Eq2 := (1+epsilon*theta(eta))*(diff(theta(eta), `$`(eta, 2)))+f(eta)*(diff(theta(eta), eta))+epsilon*(diff(theta(eta), eta))^2+Pr*S*theta(eta)+Pr*Du*(diff(phi(eta), `$`(eta, 2)))+Pr*Nb*(diff(theta(eta), eta))*(diff(phi(eta), eta))+Pr*Nt*(diff(theta(eta), eta))^2

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta))+.171*(diff(theta(eta), eta))^2+0.71e-1*theta(eta)+0.71e-1*(diff(diff(phi(eta), eta), eta))+0.71e-1*(diff(theta(eta), eta))*(diff(phi(eta), eta))

(2)

Eq3 := (diff(phi(eta), `$`(eta, 2)))/Sc+f(eta)*(diff(phi(eta), eta))-omega*(diff(theta(eta), eta))*(diff(phi(eta), eta))-omega*(diff(theta(eta), `$`(eta, 2)))*phi(eta)-delta*phi(eta)+omega*Nc*(diff(theta(eta), `$`(eta, 2)))+Sr*(diff(theta(eta), `$`(eta, 2)))

1.492537313*(diff(diff(phi(eta), eta), eta))+f(eta)*(diff(phi(eta), eta))-1.0*(diff(theta(eta), eta))*(diff(phi(eta), eta))-1.0*(diff(diff(theta(eta), eta), eta))*phi(eta)-1.0*phi(eta)+1.10*(diff(diff(theta(eta), eta), eta))

(3)

Eq4 := diff(chi(eta), `$`(eta, 2))+Lb*f(eta)*(diff(chi(eta), eta))-Pe*(diff(phi(eta), eta))*(diff(chi(eta), eta))-Pe*(diff(phi(eta), `$`(eta, 2)))*chi(eta)

diff(diff(chi(eta), eta), eta)+1.0*f(eta)*(diff(chi(eta), eta))-1.0*(diff(phi(eta), eta))*(diff(chi(eta), eta))-1.0*(diff(diff(phi(eta), eta), eta))*chi(eta)

(4)

VM := [0., .5, 1.0]

etainf := 9

bcs := f(0) = 0, (D(f))(0) = p*(D@@2)(f)*0, theta(0) = 1+q*(D(theta))(0), phi(0) = 1+r*(D(phi))(0), chi(0) = 1+s*(D(chi))(0), D(f)*etainf = b/a, theta(etainf) = 0, phi(etainf) = 0, chi(etainf) = 0

f(0) = 0, (D(f))(0) = 0., theta(0) = 1+5*(D(theta))(0), phi(0) = 1+5*(D(phi))(0), chi(0) = 1+5*(D(chi))(0), 9*D(f) = 2, theta(9) = 0, phi(9) = 0, chi(9) = 0

(5)

dsys := {Eq1, Eq2, Eq3, Eq4, bcs}

for i to 3 do M := VM[i]; dsol[i] := dsolve(dsys, numeric, continuation = lambda); print(M); print(dsol[i](0)) end do

 

 

 

 

Hello,

I would like to build this piecewise function :

 

I try this manner :

f:=x->piecewise(x=>0 and x <= 1, x^2,x > 1 and x<=2, (2-x)^2);

But, it doesn't work. I receive the following error message :

Error, `>` unexpected

Do you have some ideas about my mistake?

Thank you for your help.

Hello;

I need some help to compute the series approximation of the modulus and argument of hankel function for large x. The code display

 Error, (in asympt) unable to compute series

Thanks  for helping me.

#We define the hankel function as
#HankelH1(v,x) = BesselJ(v,x) + I*BesselY(v,x), where BesselJ and BesselY are bessel function.
#In this question the parameter "v " is  fixed. "

# Code

restart:
with(MTM):
HankelH1(v, x);
# The modulus of Hankel function
Mn:=x->abs(HankelH1(v, x));
thetan:=x->argument(HankelH1(v, x));
phin:=x->argument(diff(HankelH1(v, x),x));
dervthetan:=x->diff(thetan(x),x);
dervphin:=x->diff(phin(x),x);
# Compute series
series(thetan(x),x=infinity,7);
series(phin(x),x=infinity,7);
series(Nn(x),x=infinity, 7);
series(Mn(x),x=infinity,7);
# I define the following function
f:=x->(Nm(x)/Mn(x))*exp(I*(phin(x)-thetan(x)));

# Series approximation
series(f(x),x=infinity, 7);



 

 

Dear all;

 

Hello everybody, I need your help to dispaly some values obtained using my function f. When I run the code there is no results obtained. Many thanks.

restart:

# The vectors e(i) satify the folowing conditions
e(0)*e(1)=e(n-1) assuming  1<n;
e(0)*e(0)=e(2):
e(1)*e(1)=e(n-1) assuming  1<n: :
e(2)*e(1)=e(n) assuming  1<n:
#
for i from 1  to n-1 do
e(i)*e(0)=e(i+1);
end do:

# We define the function f
f:=e(0)->e(0)+(n-3)*e(1);
f:=e(1)->(n-2)*e(1);
for i from 2  to 3 do
f:=e(i)->(n+i-3)*e(i)+(i-1)*(n-3)*e(n-3+i);
end do:

for i from 4 to n do
f:=e(i)->(n+i-3)*e(i)
end do:

# We define the two vectors
x:=sum(alpha(k)*e(k),k=0..n);
y:=sum(beta(k)*e(k),k=0..n);

#Question : I would like to compute the following  but there is no display of the solution. 
(x*y);
f(x*y);
f(x);
f(y);
x*f(y);
f(x)*y;
f(x*y)- f(x)*y-x*f(y);

After manually working out answer for problem 4-4 in Mathews & Walker's Mathematical Methods of Physics , I tried to check my solution with maple2015. Briefly the problem involves inputs periodic with period T, being transformed into outputs, through a kernal G.  The net result is that all input frequencies omega periodic in T are multiplied by (omega_0/omega)^2, except for constant frequency which transforms to zero.  The problem asks to evaluate the kernal G.

Maple2015 correctly evaluated the integral for a constant input, a cosine input, and a sine input, but gave undefined when I tried an exponential(i*x) input which is just a linear combination of the two previous inputs.  I found this interesting because the integral is finite, well defined, and only has an absolute function (in the kernal), which may cause Maple problems, as it correctly evaluated integral when I split it into two regions.  Interestingly if instead of working with a period of T, I used 2*pi, and redfined my G function accordingly, Maple evaluated the exp input integral without any problems.  So the problem appears to be with the T variable, but I correctly used assumptions of T>0, and 0<t<T, so I am not sure why it would work correctly when I use T=2*pi, but failed when using a general period T.  Any help would be welcome.

 

 

restart

assume(T > 0)

assume(0 < t and t < T)

about(T)

Originally T, renamed T~:

  Involved in the following expressions with properties
    T-t assumed RealRange(Open(0),infinity)
  is assumed to be: real
  also used in the following assumed objects
  [T-t] assumed RealRange(Open(0),infinity)

 

about(t)

Originally t, renamed t~:

  Involved in the following expressions with properties
    T-t assumed RealRange(Open(0),infinity)
  is assumed to be: RealRange(Open(0),infinity)
  also used in the following assumed objects
  [T-t] assumed RealRange(Open(0),infinity)

 

assume(n::integer, n > 0)

about(n)

Originally n, renamed n~:

  is assumed to be: AndProp(integer,RealRange(1,infinity))

 

G := proc (x) options operator, arrow; (1/2)*omega0^2*T^2*((1/6)*Pi^2-(1/2)*Pi*abs(2*Pi*x/T)+Pi^2*x^2/T^2)/Pi^2 end proc

proc (x) options operator, arrow; (1/2)*omega0^2*T^2*((1/6)*Pi^2-(1/2)*Pi*abs(2*Pi*x/T)+Pi^2*x^2/T^2)/Pi^2 end proc

(1)

(int(G(t-tp), tp = 0 .. T))/T

0

(2)

(int(G(t-tp)*sin(2*Pi*n*tp/T), tp = 0 .. T))/T

(1/2)*T^2*omega0^2*cos(t*Pi*n/T)*sin(t*Pi*n/T)/(Pi^2*n^2)

(3)

(int(G(t-tp)*cos(2*Pi*n*tp/T), tp = 0 .. T))/T

(1/4)*T^2*omega0^2*(2*cos(t*Pi*n/T)^2-1)/(Pi^2*n^2)

(4)

(int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = 0 .. T))/T

undefined/T

(5)

(int(G(t-tp)*(cos(2*Pi*n*tp/T)+I*sin(2*Pi*n*tp/T)), tp = 0 .. T))/T

undefined/T

(6)

simplify((int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = 0 .. t))/T+(int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = t .. T))/T)

(1/4)*omega0^2*exp((2*I)*t*Pi*n/T)*T^2/(Pi^2*n^2)

(7)

assume(0 < t and t < 2*Pi)

G2 := proc (x) options operator, arrow; 2*omega0^2*((1/6)*Pi^2-(1/2)*Pi*abs(x)+(1/4)*x^2) end proc

proc (x) options operator, arrow; 2*omega0^2*((1/6)*Pi^2-(1/2)*Pi*abs(x)+(1/4)*x^2) end proc

(8)

(int(G2(t-tp)*exp(I*n*tp), tp = 0 .. 2*Pi))/(2*Pi)

omega0^2*exp(I*n*t)/n^2

(9)

 

Download MathewsWalkerProblem4-4.mwMathewsWalkerProblem4-4.mw

 

 

I'm trying to insert $(x_0,y_0)$ into a Maple plot (that's how LaTeX would be written). I want to do this with a Maple command rather than creating the plot then hand-tailoring with mouse clicks. This is what I've tried without success:

p1:=plot(sin, -Pi..Pi,-1..1):

t1:=textplot(Pi/2,0.9,something):

display(p1,t1)

For *something* I've tried such as

Typesetting:-typeset(try)

and

typeset(try)

where try is something like (x[0],y[0]) and [(x[0],y[0])] and similar forms.

No joy! Any help appreciated.

I have the following function

where A,B,Ψ, K1,K2,K3,α,β are all constants.

How to find the value of m for which the above expression is 0 or approximate to 0 for different values fo the constants.

e.g., Fixing all the parameters except A, I want to find the values of m for different values of A. How to do that in maple?

 

I hoped that Maple would return the value of 1 in all commands (see below). However, introducing a scaling parameter, sigma, yields the unevaluated expression. Why? I still think it should evaluate to the value of 1.

 

kind regards,

Harry (not a mathematician, but a psychologist)

 

 

 

integral.mw

Can anybody where I can find collection of third party Maple packages?

One site that I know is

http://cpc.cs.qub.ac.uk/

Regards

First 1176 1177 1178 1179 1180 1181 1182 Last Page 1178 of 2434