MaplePrimes Questions

Hello, 

I am trying to get W(x,y,y')=y*y'/x

I am trying 

omega:=(x, y(x), (diff(y(x),x)))-> (y(x)*(diff(y(x), x))/x);

but get 

Error, invalid parameter; functional operators require their parameters to be of type symbol or (symbol::type)

 

Can anyone help me out?

 

thank you

In this code, plot() and Norm() fail when used over a piecewise() function:

Error, invalid input: VectorCalculus:-Norm expects its 1st argument, v, to be of type {Matrix, Vector}, but received piecewise(t < 0, Vector[row](2, {(1) = -1, (2) = 0}, attributes = [coords = cartesian]), Vector[row](2, {(1) = 1, (2) = 0}, attributes = [coords = cartesian]))

Note that the same Norm() and piecewise() work fine when used without the plot() function:

Norm(vec(1));
                               1

Code works fine when piecewise() is removed, leaving a plot() / Norm() combination, for example:

So only the simultaneous combination plot() / Norm() / piecewise() fails. 

Finally, the question is:

Is there a way to plot Norm() / piecewise() combinations without workarounds like intermediate PLOT structures?

Thank you

plot(sin(x),x=-10..10)hello

I have an ODE plot like this and I want its horizontal axes to be in degree instead of radian, but I don't know how

 

NULLIn TEXT MODE the greek letters phi and varphi behave peculiarly in text entries inside text box in drawing. If it is the first letter it prints alright. Otherwise they rverse themselves (phi to varphi and viceversa). Is this solvable?

 

NULL

 

Download A_DOUBT_on_phi_varphi.mw


 


 

 

Ramakrishnan V

rukmini_ramki@hotmail.com

 

``

 

I would appreciate if anyone lets me know how to write circular references  (say 1 inside a circle to refer element 1. At present i do a drawing insert text and using.

 

Also i do not know how to remove the boundary of the overall drawing.

NULL

 

Download A_DOUBT_to_be_sent_to_prime_community.mw

Ramakrishnan V

rukmini_ramki@hotmail.com

m1 := <Old_Asso_eigenvector[2][1][1],Old_Asso_eigenvector[2][1][2],Old_Asso_eigenvector[2][1][3]>;
m2 := <Old_Asso_eigenvector[2][2][1],Old_Asso_eigenvector[2][2][2],Old_Asso_eigenvector[2][2][3]>;
m3 := <Old_Asso_eigenvector[2][3][1],Old_Asso_eigenvector[2][3][2],Old_Asso_eigenvector[2][3][3]>;

m1 := <Old_Asso_eigenvector[2][1][1],Old_Asso_eigenvector[2][2][1],Old_Asso_eigenvector[2][3][1]>;
m2 := <Old_Asso_eigenvector[2][1][2],Old_Asso_eigenvector[2][2][2],Old_Asso_eigenvector[2][3][2]>;
m3 := <Old_Asso_eigenvector[2][1][3],Old_Asso_eigenvector[2][2][3],Old_Asso_eigenvector[2][3][3]>;
ord := GramSchmidt([m1, m2, m3]);
ord := Basis([m1, m2, m3]);

ord[1].ord[2];  # expect = 1
ord[1].ord[3];  # expect = 1
ord[2].ord[1];  # expect = 1
ord[2].ord[3];  # expect = 1
ord[3].ord[1];  # expect = 1
ord[3].ord[2];  # expect = 1

is there a function get orthonormal basis ?

Why i cant get a final answer?

phi := -(1/2)*x^2+2*cos((3.14*(1/20))*x)*(c__1*cosh((3.14*(1/20))*y)+c__2*sinh((3.14*(1/20))*y)+c__3*y*cosh((3.14*(1/20))*y)+c__4*y*sinh((3.14*(1/20))*y));

-(1/2)*x^2+2*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y))

(1)

diff(phi, x, x);``

 

-1-0.4929800000e-1*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y))

(2)

-1-0.4929800000e-1*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y)) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)

-1-0.4929800000e-1*cos(.1570000000*x)*(`#msub(mi("c"),mi("1"))`*cosh(.1570000000*y)+`#msub(mi("c"),mi("2"))`*sinh(.1570000000*y)+`#msub(mi("c"),mi("3"))`*y*cosh(.1570000000*y)+`#msub(mi("c"),mi("4"))`*y*sinh(.1570000000*y)) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)

(3)

eval(-1-0.4929800000e-1*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y)) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0), y = .75);

-1-0.4929800000e-1*cos(.1570000000*x)*(1.006940545*`#msub(mi("c"),mi("1"))`+.1180222905*`#msub(mi("c"),mi("2"))`+.7552054088*`#msub(mi("c"),mi("3"))`+0.8851671788e-1*`#msub(mi("c"),mi("4"))`) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)

(4)

eval(-1-0.4929800000e-1*cos(.1570000000*x)*(c__1*cosh(.1570000000*y)+c__2*sinh(.1570000000*y)+c__3*y*cosh(.1570000000*y)+c__4*y*sinh(.1570000000*y)) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0), y = -.75);

-1-0.4929800000e-1*cos(.1570000000*x)*(1.006940545*`#msub(mi("c"),mi("1"))`-.1180222905*`#msub(mi("c"),mi("2"))`-.7552054088*`#msub(mi("c"),mi("3"))`+0.8851671788e-1*`#msub(mi("c"),mi("4"))`) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)

(5)

NULL

diff(-phi, x, y);

.3140000000*sin(.1570000000*x)*(.1570000000*c__1*sinh(.1570000000*y)+.1570000000*c__2*cosh(.1570000000*y)+c__3*cosh(.1570000000*y)+.1570000000*c__3*y*sinh(.1570000000*y)+c__4*sinh(.1570000000*y)+.1570000000*c__4*y*cosh(.1570000000*y))

(6)

eval(.3140000000*sin(.1570000000*x)*(.1570000000*c__1*sinh(.1570000000*y)+.1570000000*c__2*cosh(.1570000000*y)+c__3*cosh(.1570000000*y)+.1570000000*c__3*y*sinh(.1570000000*y)+c__4*sinh(.1570000000*y)+.1570000000*c__4*y*cosh(.1570000000*y)), y = -.75);

.3140000000*sin(.1570000000*x)*(-0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3-.2365895397*c__4)

(7)

.3140000000*sin(.1570000000*x)*(-0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3-.2365895397*c__4) = 0;

.3140000000*sin(.1570000000*x)*(-0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3-.2365895397*c__4) = 0

(8)

eval(.3140000000*sin(.1570000000*x)*(.1570000000*c__1*sinh(.1570000000*y)+.1570000000*c__2*cosh(.1570000000*y)+c__3*cosh(.1570000000*y)+.1570000000*c__3*y*sinh(.1570000000*y)+c__4*sinh(.1570000000*y)+.1570000000*c__4*y*cosh(.1570000000*y)), y = .75);

.3140000000*sin(.1570000000*x)*(0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3+.2365895397*c__4)

(9)

.3140000000*sin(.1570000000*x)*(0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3+.2365895397*c__4) = 0;

.3140000000*sin(.1570000000*x)*(0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3+.2365895397*c__4) = 0

(10)

s := solve({.3140000000*sin(.1570000000*x)*(-0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3-.2365895397*c__4) = 0, .3140000000*sin(.1570000000*x)*(0.1852949961e-1*c__1+.1580896656*c__2+1.020837670*c__3+.2365895397*c__4) = 0, -1-0.4929800000e-1*cos(.1570000000*x)*(1.006940545*c__1-.1180222905*c__2-.7552054088*c__3+0.8851671788e-1*c__4) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0), -1-0.4929800000e-1*cos(.1570000000*x)*(1.006940545*c__1+.1180222905*c__2+.7552054088*c__3+0.8851671788e-1*c__4) = piecewise(-5 < x and x < 5, -1, -10 < x and x < -5, 5 < x and x < 10, 0)}, {c__1, c__2, c__3, c__4});

{`#msub(mi("c"),mi("1"))` = -(20.28463654*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))/cos(.1570000000*x), `#msub(mi("c"),mi("2"))` = 0., `#msub(mi("c"),mi("3"))` = 0., `#msub(mi("c"),mi("4"))` = (1.588676174*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))/cos(.1570000000*x)}

(11)

phi1 := subs({c__1 = -20.28463654*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.)/cos(.1570000000*x), c__2 = 0., c__3 = 0., c__4 = 1.588676174*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.)/cos(.1570000000*x)}, phi);

-(1/2)*x^2+2*cos(.1570000000*x)*(-(20.28463654*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)/cos(.1570000000*x)+(1.588676174*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)/cos(.1570000000*x))

(12)

syy1 := diff(phi1, x, x);

-1-0.4929800000e-1*cos(.1570000000*x)*(-(20.28463654*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)/cos(.1570000000*x)+(1.588676174*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)/cos(.1570000000*x))-.6280000000*sin(.1570000000*x)*(-20.28463654*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x))*cosh(.1570000000*y)/cos(.1570000000*x)-(3.184687937*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)*sin(.1570000000*x)/cos(.1570000000*x)^2+1.588676174*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x))*y*sinh(.1570000000*y)/cos(.1570000000*x)+(.2494221593*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)*sin(.1570000000*x)/cos(.1570000000*x)^2)+2*cos(.1570000000*x)*(-20.28463654*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x, x))*cosh(.1570000000*y)/cos(.1570000000*x)-6.369375874*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x))*cosh(.1570000000*y)*sin(.1570000000*x)/cos(.1570000000*x)^2-(.9999920122*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)*sin(.1570000000*x)^2/cos(.1570000000*x)^3-(.4999960061*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*cosh(.1570000000*y)/cos(.1570000000*x)+1.588676174*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x, x))*y*sinh(.1570000000*y)/cos(.1570000000*x)+.4988443186*(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x))*y*sinh(.1570000000*y)*sin(.1570000000*x)/cos(.1570000000*x)^2+(0.7831855802e-1*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)*sin(.1570000000*x)^2/cos(.1570000000*x)^3+(0.3915927901e-1*(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.)+1.))*y*sinh(.1570000000*y)/cos(.1570000000*x))

(13)

"(->)"

-1.-2.*10^(-9)*(eval(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x), x = 1))-40.56959712*(eval(diff(piecewise(-5. < x and x < 5., -1., -10. < x and x < -5., 5. < x and x < 10., 0.), x, x), x = 1))

(14)

``

 

Download case5analytic.mw

Hello,

I would like to know how to order a sequence of number from smallest to largest. This is if I have both real and imaginary numbers. Any help would be rgeatly appreciated! Thank you in advance.

Kind regards,

Gamiba Man

I'm solving a problem described in this topic.

It's sufficient for me to obtain N variable via this manual procedure: file4.mw

However when I want to quantify an expression (f) for any N (e.g. N=40), Maple shows a value with some I variable:

screen

What does it mean?

I'm trying to calculate flux through a cone but gets the following:

Flux(VectorField(`<,>`(x, y, z), cartesian[x, y, z]), Surface(`<,>`(x,y,z), x^2+y^2<=2*a,z = 2*a-sqrt(x^2+y^2)))
Error, (in VectorCalculus:-Flux) error with surface input

HeunTPrime.mw

 

Hi all,

I hope the best for every of you...

I wonder how it can be possible to plot this function (HeunTPrime) in Maple18???

Thanks a lot

Hi, i need to plot n(celle) versus vavg, is it possible? i have tried a lot of different things without luck.

navg is in the range between 0-10

ts is between 0-100

Hope one of you can help me!

Thanks

 

 

 

equ1 := -l*cos(gamma)^2*(1-cos(`&beta;__f`))/(alpha^2*sin(sigma))-`&lambda;__2`*w*v^2*sin(sigma)/(g*lcos(gamma)^2) = 0

-l*cos(gamma)^2*(1-cos(`&beta;__f`))/(alpha^2*sin(sigma))-`&lambda;__2`*w*v^2*sin(sigma)/(g*lcos(gamma)^2) = 0

(1)

equ2 := -l*cos(gamma)^2*(1-cos(beta[f]))/(alpha*sin(sigma)*tan(sigma))+l*cos(gamma)^2*z__0*sin(`&beta;__f`)/(alpha*sin(sigma)*(2*l*cos(sigma)^2))-`&lambda;__1`*`#mi("L")`*sin(sigma)*cos(gamma)+`&lambda;__2`*L*cos(sigma)*cos(gamma)-`&lambda;__2`*`w&alpha;`*v^2*sin(sigma)/(g*l*tan(sigma)*cos(gamma)^2) = 0

-l*cos(gamma)^2*(1-cos(beta[f]))/(alpha*sin(sigma)*tan(sigma))+(1/2)*cos(gamma)^2*z__0*sin(`&beta;__f`)/(alpha*sin(sigma)*cos(sigma)^2)-`&lambda;__1`*`#mi("L")`*sin(sigma)*cos(gamma)+`&lambda;__2`*L*cos(sigma)*cos(gamma)-`&lambda;__2`*`w&alpha;`*v^2*sin(sigma)/(g*l*tan(sigma)*cos(gamma)^2) = 0

(2)

equ3 := l*cos(gamma)^2*sin(`&beta;__f`)*tan(sigma)/(alpha*sin(sigma)*(2*l)) = 0

(1/2)*cos(gamma)^2*sin(`&beta;__f`)*tan(sigma)/(alpha*sin(sigma)) = 0

(3)

equ4 := -`&lambda;__1`*`#mi("L")`*cos(sigma)*sin(gamma)+`&lambda;__2`*L*sin(sigma)*sin(gamma)-2*`&lambda;__2`*tan(gamma)*`w&alpha;`*v^2*sin(sigma)/(g*lcos(gamma)^2)-l*sin(2*gamma)*(1-cos(beta[f]))/(alpha*sin(sigma)) = 0

-`&lambda;__1`*`#mi("L")`*cos(sigma)*sin(gamma)+`&lambda;__2`*L*sin(sigma)*sin(gamma)-2*`&lambda;__2`*tan(gamma)*`w&alpha;`*v^2*sin(sigma)/(g*lcos(gamma)^2)-l*sin(2*gamma)*(1-cos(beta[f]))/(alpha*sin(sigma)) = 0

(4)

equ5 := L*cos(sigma)*cos(gamma)-w = 0

L*cos(sigma)*cos(gamma)-w = 0

(5)

equ6 := `#mi("L")`*sin(sigma)*cos(gamma)-`w&alpha;`*v^2*sin(sigma)/(g*l*cos(gamma)^2)

`#mi("L")`*sin(sigma)*cos(gamma)-`w&alpha;`*v^2*sin(sigma)/(g*l*cos(gamma)^2)

(6)

answer := solve({equ1, equ2, equ3, equ4, equ5, equ6}, {alpha, gamma, sigma, `&lambda;__1`, `&lambda;__2`, beta[f]})

Error, (in solve) a constant is invalid as a variable, gamma

 

``


how can i solve this problem?

Download Bryson_sesson1_p6.mw

hello

I have recently install Maple17 on my computer (Windows10) and I need to use some Greece alphabet such as ß but I look everywhere in maple's icon and I just could find capital Greece alphabet.

does anybody know how can I find those?

Hello,

I'm having an issue with this and I can't seem to fix it. Any help is greatly appreciated! Thank you in advance!!! For some reason mapleprimes won't let me upload the worksheet so I have pasted it below this message.

 

Kind regards.

Gambia Man

with(LinearAlgebra); UseHardwareFloats; with(plots); interface(rtablesize = infinity); with(Statistics);
L := 4; U := 1;
V := proc (x, y) options operator, arrow; piecewise((1/4)*L <= x and x <= (1/2)*L and (1/4)*L <= y and y <= (1/2)*L, U) end proc;
plot3d(V(x, y), x = 0 .. L, y = 0 .. L);

Vij := proc (ni, mi, nj, mj) local Xi, Xj; option remember; global U, L; Xi := 2*sin(ni*evalf(Pi)*x/L)*sin(mi*evalf(Pi)*y/L)/L; Xj := 2*sin(nj*evalf(Pi)*x/L)*sin(mj*evalf(Pi)*y/L)/L; return U*(int(int(Xi*Xj, x = (1/4)*L .. (1/2)*L), y = (1/4)*L .. (1/2)*L)) end proc;
HamilMat := proc (K::integer) local ni, mi, nj, mj, N, Hamil, Eigenvec, i, j, res; option remember; global Vij, U, L; N := K^2; ni := Vector(N); mi := Vector(N); nj := Vector[row](N); mj := Vector[row](N); for i to N do for j to K do res := (i+K-j)/K; if type(res, integer) = true then ni[i] := j; nj[i] := j; mi[i] := res; mj[i] := res end if end do end do; Hamil := Matrix(N, shape = symmetric); for i to N do for j from i to N do if i <> j then Hamil(i, j) := Vij(ni[i], mi[i], nj[j], mj[j]) elif i = j then Hamil(i, j) := Vij(ni[i], mi[i], nj[j], mj[j])+(1/2)*(ni[i]^2+mi[i]^2)*Pi^2/L^2 end if end do end do; Eigenvec := Eigenvectors(Hamil, output = ['values', 'vectors']), Hamil end proc;
SigFigEi := proc (Location::integer, SigFig::integer, VecSize::integer) local values, Eig, i; global HamilMat, OptK; Eig := Vector(VecSize); for i from 2 to VecSize do Eig[i] := HamilMat(i)[1][Location]; if evalf(Eig(i), SigFig+1) = evalf(Eig(i-1), SigFig+1) then OptK := i; break end if end do; values := evalf(Eig[i], SigFig); return values, OptK end proc;
BasisFunc := proc (location) local ni, mi, func, i, j, p, N, res, BasisSol; global HamilMat, L, OptK; p := evalf(Pi); N := OptK^2; ni := Vector(N); mi := Vector(N); for i to N do for j to OptK do res := (i+OptK-j)/OptK; if type(res, integer) = true then ni[i] := j; mi[i] := res end if end do end do; func := Vector(N); for i to N do func[i] := HamilMat(OptK)[2][i][location]*sin(ni[i]*p*x/L)*sin(mi[i]*p*y/L) end do; BasisSol := unapply(add(func[i], i = 1 .. N), x, y); return plot3d(BasisSol(x, y), x = 0 .. L, y = 0 .. L), func end proc;
BasisFunc(1);
Error, (in Vector) dimension parameter is required for this form of initializer

First 1203 1204 1205 1206 1207 1208 1209 Last Page 1205 of 2434