MaplePrimes Questions

Hi everybody,

I solve an ODE system numerically with the command

Tend := ….. :
sol := dsolve(MySys, numeric, method=rosenbrock, range=0..Tend):    # or rkf45

One of my colleagues wants the solution in array form for using it in a spreadsheet (namely Excel). 
Here is an example of what I do :
 
data := plottools:-getdata( plots:-odeplot(sol, […..], 0..Tend, refine = Q) )
:  # Q rational
result := data[3]:
ExcelTools:-Export (result, …)


To understand the following, you need to know that
the time step varies by several decades (at least 3 or 4). and that  numfun
is typically in the order of 10^5
 
When I ask Maple to construct  data , Maple seems to sample the solution 
sol
according to the local time step dsolve has selected (and probably some other parameters ?)
Because this time step varies in very large proportions, the result is sometimes a concentration of points in regions where the solution is rapidly changing (which is desirable) … with some lacunarity in slow varying regions.

To obviate this, sometimes  poor appearance, I used to force Maple to compute the solution by regularly sampling the range
]0, Tend[  and combining this array with the original one (result
).
But this not satisfactory for I do not avoid lacunarity region (unless I proceed in some ad hoc way)

Here is my question :
Could you give me some elements about  the way odeplot adapts its sampling strategy according to the local time step, the budget N (the Q value I guess) and maybe numfun
?

Thank you in advance

Dear readers,

For a question for my students I want them to calculate tge resulting vector from two vectors. The student had to answer by giving the length and angle of the resulting vector.

For the question the vector angle is always larger as 180 derges, the student should for example give a result of 270 degrees.

Currently I'm using the following code:

$F1=100;#range(200,500,20);
$F2=100;#range(100,200,10);
$A1=45;#range(10,80,5);
$A2=45;#range(10,80,5);
$A1r=180+$A1;
$A2r=360-$A2;
$F1x=maple("cos(($A1r)*Pi/180)*$F1");
$F1y=maple("sin(($A1r)*Pi/180)*$F1");
$F2x=maple("cos(($A2r)*Pi/180)*$F2");
$F2y=maple("sin(($A2r)*Pi/180)*$F2");
$V1=maple("Vector(2,[($F1x),($F1y)])");
$V2=maple("Vector(2,[($F2x),($F2y)])");
$V3=maple("($V1)+($V2)");
$F3=maple("LinearAlgebra[Norm]($V3)");
$V0x=maple("Vector(2,[1,0])");
$A3=maple("LinearAlgebra[VectorAngle](($V0x),($V3))");
$A4=maple("evalf((($A3)*180/(Pi)))");

As you can see maple will always give an angle smaller than 180 degrees since the angle between two vectors is always 180 degrees or smaller.

Can anyone tell me how I should code this problem such that the rest for A4 will be 270 degrees rather than 90 degrees, as is given from the current way of coding.

Thank you in advance.

I have excuted a loop for i from.....by...while.....do l2:=NLPSolve(.......) with variables, t1,th,tl, etc. I need get the numerical result of theses variables and assign them to t1,th, etc. After execute a function with them. I have tried with op, map and assign, but the program don't understand the numerical value of variables. Why?. How can i assign theses numerical vaules?. Thanks! 

hi

please help to me for solve this equation via pdsolve?

thanks

dsove2.mw

restart

f := 1; k := 1; h := 1

PDE := diff((diff(rho*H(rho, z), rho))/rho, rho)+diff(H(rho, z), z, z)+k^2*H(rho, z) = f

-(H(rho, z)+rho*(diff(H(rho, z), rho)))/rho^2+(2*(diff(H(rho, z), rho))+rho*(diff(diff(H(rho, z), rho), rho)))/rho+diff(diff(H(rho, z), z), z)+H(rho, z) = 1

(1)

NULL

NULL

NULL

NULL

sol3 := dsolve([PDE, (D[2](H))(rho, -h) = 0, (D[2](H))(rho, 0) = 0], H(rho, z))

NULL



Download dsove2.mw

 

 

 

hi

in attached file below not answer found for dsolve?

please help me

thanks..

dsove.mw

restart

J := 1:

PDE := diff(T(z, t), z, z)-.2*(diff(T(z, t), t, t)) = int(.7703831837*(diff(T(z, tau), tau, tau))/(t-tau)^.3, tau = 0 .. t):

with(inttrans):

sol := laplace(PDE, t, s):

sol2 := subs([laplace(T(z, t), t, s) = U(z, t), T(z, 0) = sin(J*Pi*z), (D[2](T))(z, 0) = 0], sol)

diff(diff(U(z, t), z), z)-.2000000000*s^2*U(z, t)+.2000000000*s*sin(Pi*z) = -1.000000000*s^.3000000000*sin(Pi*z)+1.000000000*s^1.300000000*U(z, t)

(1)

sol3 := dsolve([sol2, (D[1](U))(0, t) = 0, (D[1](U))(1, t) = 0], U(z, t))

"sol3 := "

(2)

U(z, t) = invlaplace(rhs(sol3), s, t)

Error, invalid input: rhs expects 1 argument, but received 0

 

sol4 := simplify(subs(z = 0, rhs(sol3)))

Error, invalid input: rhs expects 1 argument, but received 0

 

``

``



Download dsove.mw

 

I'm trying to compute the tensor product of two column vectors as

 

with(LinearAlgebra):

A:=Matrix([[1/sqrt(2)],[0],[0],[1/sqrt(2)]]);

KroneckerProduct(A,A);

 

And the output is a column vector with entries: "16 x 1 Matrix", "Data Type: Anything", "Storage: rectangular", "Order: Fortran_order"

 

The Maple documentation indicates that this function should output the result of the kronecker tensor product of the input matrices, and I've followed the same form as the examples in the documentation... Does anyone know why this isn't working as it should?

> restart;
> libname = [shootlib, libname];
> with(shoot);
Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received shoot
> with(plots);
Pr := 10; s = -.1; lambda := 0; Gr := 1.0; Gm := 1.0; beta := -1.20;
10
s = -0.1
0
1.0
1.0
-1.20
> M := 0.; z := .1; Xi := .5; Nt := .5; Nb := .2; l := 5; Nr := .5; epsilon1 := .2; epsilon2 := .2;
0.
0.1
0.5
0.5
0.2
5
0.5
0.2
0.2
> Prff := Pr/(1+4.*N*(1/3));
10
-----------------
1 + 1.333333333 N
> FNS := {f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), `ϕ`(eta)};
{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}
> ODE := {diff(h(eta), eta)+.75*l*f(eta)*h(eta)-(1/4)*l*u(eta)*epsilon2-Nt*(.75*f(eta)*r(eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta))/Nb = 0, .75*f(eta)*r(eta)+diff(r(eta), eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta) = 0, diff(v(eta), eta)+3*(f(eta)*v(eta)-u(eta)*u(eta))/(4*Pr)-(M+lambda)*u(eta)+theta(eta)-Nr*`ϕ`(eta) = 0, diff(f(eta), eta) = u(eta), diff(u(eta), eta) = v(eta), diff(theta(eta), eta) = r(eta), diff(`ϕ`(eta), eta) = h(eta)};
/ / d \
{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }
deta /
> IC := {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0), theta(0) = 1-(1/4)*epsilon1, `ϕ`(0) = (1/4)*epsilon2};
{f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0),

theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}
> L := 2;
2
> BC = {u(L) = 0, theta(L) = 0, `ϕ`(L) = 0};
BC = {u(2) = 0, theta(2) = 0, ϕ(2) = 0}
> S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]);
/ / / d \
Shoot|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0,
deta /

v(0) = alpha(0), theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}, BC,

{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}, [

alpha = 0.42453091564332, tau = -0.21166705749821127,

\
xi = -0.4944583739651814]|
/
RungeKutta(ODE, BC, alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814, output=plot);
/ / / d \
RungeKutta|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, BC, alpha = 0.42453091564332,
deta /

\
tau = -0.21166705749821127, xi = -0.4944583739651814, output = plot|
/
>

 

 

Dear sir 

in the above problem im geiitng the problem with , with(shoot) command and even it is not executing at

S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]) this command, here alpha,tau and zi variable should change.

> restart;
> with(plots);
> Eql := diff(f(eta), eta, eta, eta)+.5*f(eta)*(diff(f(eta), eta, eta)) = 0;
/ d / d / d \\\ / d / d \\
|----- |----- |----- f(eta)||| + 0.5 f(eta) |----- |----- f(eta)|| = 0
\ deta \ deta \ deta /// \ deta \ deta //
> blt := 10;
10
> bcs1 := f(0) = f0, (D(f))(0) = 0, (D(f))(blt) = 1;
f(0) = f0, D(f)(0) = 0, D(f)(10) = 1
> L := [0];
[0]
> for k to 1 do R := dsolve(eval({Eql, bcs1}, f0 = L[k]), f(eta), numeric, output = listprocedure); X1 || k := rhs(R[3]); X2 || k := rhs(R[4]) end do;
[
[eta = proc(eta) ... end;, f(eta) = proc(eta) ... end;,
[

d
----- f(eta) = proc(eta) ... end;,
deta

d / d \ ]
----- |----- f(eta)| = proc(eta) ... end;]
deta \ deta / ]
proc(eta) ... end;
proc(eta) ... end;
> print([X2], [1 .. 1, 0]);

 

dear sir/madam

 

in the above problem i should get the asnser (at print line) but its not getting so please can you tell me why it is not getting.

Let us denote the cardinality of the subsets of {1,..,n} without two consequent numbers
(e.g. {..,4,5,..} is not allowed) by A[n]. What is the asymptotics of A[n] as n approaches infinity?
The same question for the case of three consequent numbers.
Here is my math experiment.
restart; L := combinat:-powerset({seq(i, i = 1 .. 11)}):#n = 11
nops(%);
2048
M := selectremove(c-> min([seq(c[k+1]-c[k], k = 1 .. nops(c)-1)]) = 1, L)[2]:
nops(M);
233
The other results are [11, 233], [15, 1597], [20, 17711], [21, 28657], [22, 46368].
These points are very close to some straight line in logarithmic scale as
plot([[11, 233], [15, 1597], [20, 17711], [21, 28657], [22, 46368]], axis[2] = [mode = log]);
shows. However, the ones do not exactly belong to a straight line:
evalf(ln(46368)-ln(28657), 15);
0.4812118247230
evalf(ln(28657)-ln(17711), 15);
0.48121182594077
eval(exp(.4812118247230*n), n = 15);
1364.000725  .
These results suggest that A[n] is asymptotically equal to exp(c*n) with c about 0.481.
I have not succeeded to find out the nature of the constant c.

question_on_asymptotics.mw

 

 

I need to solve an ode of the type ay''+by'+cy=f(x) using cubic b spline.

can any one help me with the code or algorithm. Thanks

N := 4;
print(`output redirected...`); # input placeholder
4
y := sum(A[2*n].cos(2.*n.x), n = 0 .. N);

eq1 := diff(y, `$`(x, 2))+(a+2*q*cos(2*x))*y

eq2 := map(combine, eq1, trig)

for i from 0 to 4 do eq4[i] := coeff(eq2, cos(2*n*x)) end do

From these I want to extract the co-ffficients of cos(0x),cos(2x),cos(4x)..

and form a simultaneous linear equation containg A0,A2,A4

The solution is 

aA0+qA2=0

2q*A0+(a-4)*A2+q*A4=0

Can anybody tell me how to do it

so I'm trying this:

restart;

sigma := 0.143e-18;

l_0 := 1.87;

l0 := 1.87;

roll := rand(0 .. 25.0);

f_gauss := proc (x) options operator, arrow; exp(-(1/2)*x^2/`σ_x`^2)/sqrt(2*Pi*`σ_x`^2) end proc;

f_norm := proc (dx) options operator, arrow; int(f_gauss(x), x = -(1/2)*dx .. (1/2)*dx) end proc;

sol_gauss := proc (mix) options operator, arrow; evalf(eval(-ln((int(f_gauss(x)*exp(-2*sigma*N2O*sqrt((1/4)*l_0^2-x^2)), x = -(1/2)*dx .. (1/2)*dx))/f_norm(dx))/(sigma*N2O), [N2O = 0.25e20*mix/100])) end proc;

for ii to 10 do

a := roll();

eval(sol_gauss(a), [dx = l_0, `σ_x` = l0])

end do

Hello people in mapleprimes,

I want to ask you about how to make a function of function which makes a logarithmic derivative of a function.

For example, x^3 is mapped as h(x^3)=3h(x), h(x+y)=(x/(x+y))*h(x)+(y/(x+y))*h(y),

h(g(x)*k(x))=h(g(x))+h(k(x)).

I hope someone give me a hing to create h.

 

Best wishes.

taro

 

 

 

 


environment
- Windows 10 LTSB 64-bit
- Intel Haswell/Skylake

sequence:
1. install Windows unattended
2. install scheduletask for software installation (runs with systemaccount on windows starts and available network)
3. task runs a cmdfile(1) that map a networkshare and runs another cmdfile(2) on the networkshare
4. cmdfile(2) runs softwareinstallation one by one, every install is a seperate cmdfile
5. cmfile(maple.cmd) starts maple installation with the following cmdline
-->
START "Maple 2016" /WAIT "N:\Math\Maple\Maple2016Windowsx86Installer.exe" --mode unattended --desktopshortcut 0 --shortcutname "Maple 2016" --configureMatlab 0 --matlabpath "" --licenseType network --serverName "licserver.company.domain" --portnumber 27000
<--

Note: licenseserver and port are configured correctly, tested with manual installation of Maple

effects:
- installer starts and install some files (found unter C:\ProgramFiles\Maple 2016)
- installer persists in memory 
- no startmenuentry for maple found
- no installler logfile in maple directory found
- install not finished

- try it with --optionfile ... -> hangs
- try copying all files to local harddisk and run it from there -> hangs
- try it running with a local administrator (using psexec) -> hangs

- if im logged in and run the installer cmdline manually with adminconsole or with systemaccount (psexec -i -s -d cmd) the installation runs perfect, but this is not what i need to install hundreds of machines

First 1077 1078 1079 1080 1081 1082 1083 Last Page 1079 of 2434