MaplePrimes Questions

I have two data sets (time series) that appear to have similar profiles and am looking to find a way to establish a correlation measure. The linear (Pearson) coefficient is around 0.89, but since this particular function is nonlinear, can anyone suggest a method or routine that can be used to obtain this correlation?

Thank you!

 

Correlation.mw

Hello, would you please help with this problem

 I need to solve the system using polynomial coefficients

thank you 


 

restart

``

eq1 := diff(A(r), r, r)+(diff(A(r), r))/r+A(r)/r^2-a*r*A(r)+b*r^2*f*B(r)

diff(diff(A(r), r), r)+(diff(A(r), r))/r+A(r)/r^2-a*r*A(r)+b*r^2*f*B(r)

(1)

eq2 := diff(B(r), r, r)+(diff(B(r), r))/r+B(r)/r^2-c*r*A(r)+d*r^2*B(r)

diff(diff(B(r), r), r)+(diff(B(r), r))/r+B(r)/r^2-c*r*A(r)+d*r^2*B(r)

(2)

``

``

dsolve({eq1, eq2}, {A(r), B(r)});

{A(r) = DESol({-(-b*c*f*r^7+a*d*r^7-d*r^4+2*a*r^3-17)*_Y(r)/r^4-(-d*r^5-a*r^4-3*r)*(diff(_Y(r), r))/r^4-(-d*r^6+a*r^5-r^2)*(diff(diff(_Y(r), r), r))/r^4-2*(diff(diff(diff(_Y(r), r), r), r))/r+diff(diff(diff(diff(_Y(r), r), r), r), r)}, {_Y(r)}), B(r) = (a*r^3*A(r)-(diff(diff(A(r), r), r))*r^2-(diff(A(r), r))*r-A(r))/(b*f*r^4)}

(3)

dsolve({eq1, eq2}, {A(r), B(r)}, 'formal_series', 'coeffs' = 'polynomial')

Error, (in dsolve/FORMALSERIES) the first argument must be a homogeneous linear ode with polynomial coefficients

 

``

``

``


 

Download dsolve.mwdsolve.mw


 

``

restart;

N := 2

2

(1)

H1 := B*H(Zeta)/A+C*H(Zeta)/A+E/A

B*H(Zeta)/A+C*H(Zeta)/A+E/A

(2)

expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(H1, Zeta)))

B^2*H(Zeta)/A^2+2*B*C*H(Zeta)/A^2+B*E/A^2+C^2*H(Zeta)/A^2+C*E/A^2

(3)

s := sum(alpha[i]*(d+H(Zeta))^i, i = -N .. N)+sum(beta[i]*(d+H(Zeta))^(-i), i = 1 .. N)

alpha[-2]/(d+H(Zeta))^2+alpha[-1]/(d+H(Zeta))+alpha[0]+alpha[1]*(d+H(Zeta))+alpha[2]*(d+H(Zeta))^2+beta[1]/(d+H(Zeta))+beta[2]/(d+H(Zeta))^2

(4)

``

s1 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(s, Zeta)))

-2*alpha[-2]*B*H(Zeta)/((d+H(Zeta))^3*A)-2*alpha[-2]*C*H(Zeta)/((d+H(Zeta))^3*A)-2*alpha[-2]*E/((d+H(Zeta))^3*A)-alpha[-1]*B*H(Zeta)/((d+H(Zeta))^2*A)-alpha[-1]*C*H(Zeta)/((d+H(Zeta))^2*A)-alpha[-1]*E/((d+H(Zeta))^2*A)+alpha[1]*B*H(Zeta)/A+alpha[1]*C*H(Zeta)/A+alpha[1]*E/A+2*alpha[2]*d*B*H(Zeta)/A+2*alpha[2]*d*C*H(Zeta)/A+2*alpha[2]*d*E/A+2*alpha[2]*B*H(Zeta)^2/A+2*alpha[2]*C*H(Zeta)^2/A+2*alpha[2]*H(Zeta)*E/A-beta[1]*B*H(Zeta)/((d+H(Zeta))^2*A)-beta[1]*C*H(Zeta)/((d+H(Zeta))^2*A)-beta[1]*E/((d+H(Zeta))^2*A)-2*beta[2]*B*H(Zeta)/((d+H(Zeta))^3*A)-2*beta[2]*C*H(Zeta)/((d+H(Zeta))^3*A)-2*beta[2]*E/((d+H(Zeta))^3*A)

(5)

s2 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, diff(s1, Zeta)))

alpha[1]*B^2*H(Zeta)/A^2+alpha[1]*B*E/A^2+alpha[1]*C^2*H(Zeta)/A^2+alpha[1]*C*E/A^2+6*alpha[-2]*E^2/((d+H(Zeta))^4*A^2)+2*alpha[-1]*E^2/((d+H(Zeta))^3*A^2)+4*alpha[2]*B^2*H(Zeta)^2/A^2+4*alpha[2]*C^2*H(Zeta)^2/A^2+2*beta[1]*E^2/((d+H(Zeta))^3*A^2)+6*beta[2]*E^2/((d+H(Zeta))^4*A^2)+2*alpha[2]*E^2/A^2+6*alpha[2]*E*B*H(Zeta)/A^2+6*alpha[2]*E*C*H(Zeta)/A^2-2*alpha[-2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*alpha[-2]*B*E/((d+H(Zeta))^3*A^2)-2*alpha[-2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*alpha[-2]*C*E/((d+H(Zeta))^3*A^2)-alpha[-1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)-alpha[-1]*B*E/((d+H(Zeta))^2*A^2)-alpha[-1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)-alpha[-1]*C*E/((d+H(Zeta))^2*A^2)+2*alpha[2]*d*B^2*H(Zeta)/A^2+2*alpha[2]*d*B*E/A^2+2*alpha[2]*d*C^2*H(Zeta)/A^2+2*alpha[2]*d*C*E/A^2+8*alpha[2]*B*H(Zeta)^2*C/A^2-beta[1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)-beta[1]*B*E/((d+H(Zeta))^2*A^2)-beta[1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)-beta[1]*C*E/((d+H(Zeta))^2*A^2)-2*beta[2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*beta[2]*B*E/((d+H(Zeta))^3*A^2)-2*beta[2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)-2*beta[2]*C*E/((d+H(Zeta))^3*A^2)+6*alpha[-2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+6*alpha[-2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+2*alpha[-1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*alpha[-1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*beta[1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+2*beta[1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)+6*beta[2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+6*beta[2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)+2*alpha[1]*B*C*H(Zeta)/A^2+4*alpha[-1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)+4*beta[1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)+12*beta[2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-4*alpha[-2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+12*alpha[-2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+12*alpha[-2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-2*alpha[-1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+4*alpha[-1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+4*alpha[-1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)+4*alpha[2]*d*B*C*H(Zeta)/A^2-2*beta[1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+4*beta[1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+4*beta[1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-4*beta[2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+12*beta[2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+12*beta[2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)+12*alpha[-2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)

(6)

s22 := expand(subs(diff(H(Zeta), Zeta) = B*H(Zeta)/A+C*H(Zeta)/A+E/A, s^2))

2*alpha[-2]*alpha[1]*d/(d+H(Zeta))^2+2*alpha[-2]*alpha[1]*H(Zeta)/(d+H(Zeta))^2+2*alpha[-2]*alpha[2]*d^2/(d+H(Zeta))^2+2*alpha[-2]*alpha[2]*H(Zeta)^2/(d+H(Zeta))^2+2*alpha[-1]*alpha[1]*d/(d+H(Zeta))+2*alpha[-1]*alpha[1]*H(Zeta)/(d+H(Zeta))+2*alpha[-1]*alpha[2]*d^2/(d+H(Zeta))+2*alpha[-1]*alpha[2]*H(Zeta)^2/(d+H(Zeta))+4*alpha[0]*alpha[2]*d*H(Zeta)+6*alpha[1]*d^2*alpha[2]*H(Zeta)+6*alpha[1]*d*alpha[2]*H(Zeta)^2+2*alpha[1]*d*beta[1]/(d+H(Zeta))+2*alpha[1]*d*beta[2]/(d+H(Zeta))^2+2*alpha[1]*H(Zeta)*beta[1]/(d+H(Zeta))+2*alpha[1]*H(Zeta)*beta[2]/(d+H(Zeta))^2+2*alpha[2]*d^2*beta[1]/(d+H(Zeta))+2*alpha[2]*d^2*beta[2]/(d+H(Zeta))^2+2*alpha[2]*H(Zeta)^2*beta[1]/(d+H(Zeta))+2*alpha[2]*H(Zeta)^2*beta[2]/(d+H(Zeta))^2+alpha[-2]^2/(d+H(Zeta))^4+alpha[-1]^2/(d+H(Zeta))^2+alpha[0]^2+alpha[1]^2*d^2+alpha[1]^2*H(Zeta)^2+alpha[2]^2*d^4+alpha[2]^2*H(Zeta)^4+beta[1]^2/(d+H(Zeta))^2+beta[2]^2/(d+H(Zeta))^4+4*alpha[2]^2*d^3*H(Zeta)+2*alpha[0]*alpha[1]*d+2*alpha[-1]*beta[2]/(d+H(Zeta))^3+4*alpha[2]^2*d*H(Zeta)^3+2*alpha[0]*alpha[2]*d^2+2*alpha[-1]*alpha[0]/(d+H(Zeta))+2*alpha[0]*beta[1]/(d+H(Zeta))+2*alpha[-2]*alpha[-1]/(d+H(Zeta))^3+2*beta[1]*beta[2]/(d+H(Zeta))^3+2*alpha[-2]*beta[2]/(d+H(Zeta))^4+2*alpha[-2]*alpha[0]/(d+H(Zeta))^2+2*alpha[0]*beta[2]/(d+H(Zeta))^2+2*alpha[0]*alpha[2]*H(Zeta)^2+2*alpha[-1]*beta[1]/(d+H(Zeta))^2+2*alpha[0]*alpha[1]*H(Zeta)+2*alpha[1]^2*d*H(Zeta)+2*alpha[1]*d^3*alpha[2]+2*alpha[1]*H(Zeta)^3*alpha[2]+6*alpha[2]^2*d^2*H(Zeta)^2+2*alpha[-2]*beta[1]/(d+H(Zeta))^3+4*alpha[-2]*alpha[2]*d*H(Zeta)/(d+H(Zeta))^2+4*alpha[-1]*alpha[2]*d*H(Zeta)/(d+H(Zeta))+4*alpha[2]*d*H(Zeta)*beta[1]/(d+H(Zeta))+4*alpha[2]*d*H(Zeta)*beta[2]/(d+H(Zeta))^2

(7)

``

eq := expand(K+(1+w)*s-a*s22-b*V*s2)

alpha[-2]/(d+H(Zeta))^2+alpha[-1]/(d+H(Zeta))+beta[1]/(d+H(Zeta))+beta[2]/(d+H(Zeta))^2+alpha[0]+2*w*alpha[2]*d*H(Zeta)-4*a*alpha[2]^2*d^3*H(Zeta)-2*a*alpha[0]*alpha[1]*d-2*a*alpha[-1]*beta[2]/(d+H(Zeta))^3-4*a*alpha[2]^2*d*H(Zeta)^3-2*a*alpha[0]*alpha[2]*d^2-2*a*alpha[-1]*alpha[0]/(d+H(Zeta))-2*a*alpha[0]*beta[1]/(d+H(Zeta))-2*a*alpha[-2]*alpha[-1]/(d+H(Zeta))^3-2*a*beta[1]*beta[2]/(d+H(Zeta))^3-2*a*alpha[-2]*beta[2]/(d+H(Zeta))^4-2*a*alpha[-2]*alpha[0]/(d+H(Zeta))^2-2*a*alpha[0]*beta[2]/(d+H(Zeta))^2-2*a*alpha[0]*alpha[2]*H(Zeta)^2-2*a*alpha[-1]*beta[1]/(d+H(Zeta))^2-2*a*alpha[0]*alpha[1]*H(Zeta)-2*a*alpha[1]^2*d*H(Zeta)-2*a*alpha[1]*d^3*alpha[2]-2*a*alpha[1]*H(Zeta)^3*alpha[2]-6*a*alpha[2]^2*d^2*H(Zeta)^2-2*a*alpha[-2]*beta[1]/(d+H(Zeta))^3-4*b*V*beta[1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-12*b*V*alpha[-2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-4*b*V*beta[1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*E*C*H(Zeta)/((d+H(Zeta))^4*A^2)-4*b*V*alpha[-1]*E*C*H(Zeta)/((d+H(Zeta))^3*A^2)-4*b*V*alpha[2]*d*B*C*H(Zeta)/A^2-4*b*V*beta[1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)-12*b*V*alpha[-2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+4*b*V*alpha[-2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)+2*b*V*alpha[-1]*B*C*H(Zeta)/((d+H(Zeta))^2*A^2)-4*b*V*alpha[-1]*B*H(Zeta)^2*C/((d+H(Zeta))^3*A^2)-12*b*V*beta[2]*E*B*H(Zeta)/((d+H(Zeta))^4*A^2)+4*b*V*beta[2]*B*C*H(Zeta)/((d+H(Zeta))^3*A^2)-12*b*V*alpha[-2]*B*H(Zeta)^2*C/((d+H(Zeta))^4*A^2)-4*b*V*alpha[-1]*E*B*H(Zeta)/((d+H(Zeta))^3*A^2)+K+alpha[1]*d+alpha[1]*H(Zeta)+alpha[2]*d^2+alpha[2]*H(Zeta)^2+w*alpha[0]-a*alpha[0]^2-6*b*V*alpha[2]*E*B*H(Zeta)/A^2-6*b*V*alpha[2]*E*C*H(Zeta)/A^2+2*b*V*alpha[-2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*B*E/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*alpha[-2]*C*E/((d+H(Zeta))^3*A^2)+b*V*alpha[-1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*B*E/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*alpha[-1]*C*E/((d+H(Zeta))^2*A^2)-2*b*V*alpha[2]*d*B^2*H(Zeta)/A^2-2*b*V*alpha[2]*d*B*E/A^2-2*b*V*alpha[2]*d*C^2*H(Zeta)/A^2-2*b*V*alpha[2]*d*C*E/A^2-8*b*V*alpha[2]*B*H(Zeta)^2*C/A^2+b*V*beta[1]*B^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*beta[1]*B*E/((d+H(Zeta))^2*A^2)+b*V*beta[1]*C^2*H(Zeta)/((d+H(Zeta))^2*A^2)+b*V*beta[1]*C*E/((d+H(Zeta))^2*A^2)+2*b*V*beta[2]*B^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*B*E/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*C^2*H(Zeta)/((d+H(Zeta))^3*A^2)+2*b*V*beta[2]*C*E/((d+H(Zeta))^3*A^2)-6*b*V*alpha[-2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-6*b*V*alpha[-2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[-1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*alpha[-1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*beta[1]*B^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-2*b*V*beta[1]*C^2*H(Zeta)^2/((d+H(Zeta))^3*A^2)-6*b*V*beta[2]*B^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-6*b*V*beta[2]*C^2*H(Zeta)^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[1]*B*C*H(Zeta)/A^2-a*alpha[1]^2*H(Zeta)^2-a*alpha[1]^2*d^2-a*beta[1]^2/(d+H(Zeta))^2+w*alpha[-1]/(d+H(Zeta))-a*alpha[-2]^2/(d+H(Zeta))^4-a*beta[2]^2/(d+H(Zeta))^4+w*beta[1]/(d+H(Zeta))+w*alpha[1]*d-a*alpha[2]^2*H(Zeta)^4-a*alpha[2]^2*d^4+w*alpha[2]*d^2-a*alpha[-1]^2/(d+H(Zeta))^2+w*alpha[2]*H(Zeta)^2+w*alpha[1]*H(Zeta)+w*beta[2]/(d+H(Zeta))^2+w*alpha[-2]/(d+H(Zeta))^2+2*alpha[2]*d*H(Zeta)-2*a*alpha[-2]*alpha[1]*d/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[1]*H(Zeta)/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[2]*d^2/(d+H(Zeta))^2-2*a*alpha[-2]*alpha[2]*H(Zeta)^2/(d+H(Zeta))^2-2*a*alpha[-1]*alpha[1]*d/(d+H(Zeta))-2*a*alpha[-1]*alpha[1]*H(Zeta)/(d+H(Zeta))-2*a*alpha[-1]*alpha[2]*d^2/(d+H(Zeta))-2*a*alpha[-1]*alpha[2]*H(Zeta)^2/(d+H(Zeta))-4*a*alpha[0]*alpha[2]*d*H(Zeta)-6*a*alpha[1]*d^2*alpha[2]*H(Zeta)-6*a*alpha[1]*d*alpha[2]*H(Zeta)^2-2*a*alpha[1]*d*beta[1]/(d+H(Zeta))-2*a*alpha[1]*d*beta[2]/(d+H(Zeta))^2-2*a*alpha[1]*H(Zeta)*beta[1]/(d+H(Zeta))-2*a*alpha[1]*H(Zeta)*beta[2]/(d+H(Zeta))^2-2*a*alpha[2]*d^2*beta[1]/(d+H(Zeta))-2*a*alpha[2]*d^2*beta[2]/(d+H(Zeta))^2-2*a*alpha[2]*H(Zeta)^2*beta[1]/(d+H(Zeta))-2*a*alpha[2]*H(Zeta)^2*beta[2]/(d+H(Zeta))^2-2*b*V*alpha[2]*E^2/A^2-4*a*alpha[-2]*alpha[2]*d*H(Zeta)/(d+H(Zeta))^2-4*a*alpha[-1]*alpha[2]*d*H(Zeta)/(d+H(Zeta))-4*a*alpha[2]*d*H(Zeta)*beta[1]/(d+H(Zeta))-4*a*alpha[2]*d*H(Zeta)*beta[2]/(d+H(Zeta))^2-b*V*alpha[1]*B^2*H(Zeta)/A^2-b*V*alpha[1]*B*E/A^2-b*V*alpha[1]*C^2*H(Zeta)/A^2-b*V*alpha[1]*C*E/A^2-6*b*V*alpha[-2]*E^2/((d+H(Zeta))^4*A^2)-2*b*V*alpha[-1]*E^2/((d+H(Zeta))^3*A^2)-4*b*V*alpha[2]*B^2*H(Zeta)^2/A^2-4*b*V*alpha[2]*C^2*H(Zeta)^2/A^2-2*b*V*beta[1]*E^2/((d+H(Zeta))^3*A^2)-6*b*V*beta[2]*E^2/((d+H(Zeta))^4*A^2)

(8)

collect(eq, [H, d], recursive):

eqq := subs(H(Zeta) = H, eq)

alpha[0]-2*a*alpha[0]*alpha[1]*d-2*a*alpha[0]*alpha[2]*d^2-2*a*alpha[1]*d^3*alpha[2]+2*w*alpha[2]*d*H-4*a*alpha[2]^2*d^3*H-2*a*alpha[-1]*beta[2]/(d+H)^3-4*a*alpha[2]^2*d*H^3-2*a*alpha[-1]*alpha[0]/(d+H)-2*a*alpha[0]*beta[1]/(d+H)-2*a*alpha[-2]*alpha[-1]/(d+H)^3-2*a*beta[1]*beta[2]/(d+H)^3-2*a*alpha[-2]*beta[2]/(d+H)^4-2*a*alpha[-2]*alpha[0]/(d+H)^2-2*a*alpha[0]*beta[2]/(d+H)^2-2*a*alpha[0]*alpha[2]*H^2-2*a*alpha[-1]*beta[1]/(d+H)^2-2*a*alpha[0]*alpha[1]*H-2*a*alpha[1]^2*d*H-2*a*alpha[1]*H^3*alpha[2]-6*a*alpha[2]^2*d^2*H^2-2*a*alpha[-2]*beta[1]/(d+H)^3+alpha[-2]/(d+H)^2+alpha[-1]/(d+H)+beta[1]/(d+H)+beta[2]/(d+H)^2+alpha[1]*H+alpha[2]*H^2-2*a*alpha[-2]*alpha[1]*d/(d+H)^2-2*a*alpha[-2]*alpha[1]*H/(d+H)^2-2*a*alpha[-2]*alpha[2]*d^2/(d+H)^2-2*a*alpha[-2]*alpha[2]*H^2/(d+H)^2-2*a*alpha[-1]*alpha[1]*d/(d+H)-2*a*alpha[-1]*alpha[1]*H/(d+H)-2*a*alpha[-1]*alpha[2]*d^2/(d+H)-2*a*alpha[-1]*alpha[2]*H^2/(d+H)-4*a*alpha[0]*alpha[2]*d*H-6*a*alpha[1]*d^2*alpha[2]*H-6*a*alpha[1]*d*alpha[2]*H^2-2*a*alpha[1]*d*beta[1]/(d+H)-2*a*alpha[1]*d*beta[2]/(d+H)^2-2*a*alpha[1]*H*beta[1]/(d+H)-2*a*alpha[1]*H*beta[2]/(d+H)^2-2*a*alpha[2]*d^2*beta[1]/(d+H)-2*a*alpha[2]*d^2*beta[2]/(d+H)^2-2*a*alpha[2]*H^2*beta[1]/(d+H)-2*a*alpha[2]*H^2*beta[2]/(d+H)^2-4*b*V*alpha[-1]*B*H^2*C/((d+H)^3*A^2)-12*b*V*beta[2]*E*B*H/((d+H)^4*A^2)+4*b*V*beta[2]*B*C*H/((d+H)^3*A^2)-12*b*V*alpha[-2]*B*H^2*C/((d+H)^4*A^2)-4*b*V*alpha[-1]*E*B*H/((d+H)^3*A^2)-12*b*V*beta[2]*B*H^2*C/((d+H)^4*A^2)-4*b*V*beta[1]*E*C*H/((d+H)^3*A^2)-12*b*V*alpha[-2]*E*C*H/((d+H)^4*A^2)-4*b*V*beta[1]*E*B*H/((d+H)^3*A^2)-12*b*V*beta[2]*E*C*H/((d+H)^4*A^2)-4*b*V*alpha[-1]*E*C*H/((d+H)^3*A^2)-4*b*V*alpha[2]*d*B*C*H/A^2-4*b*V*beta[1]*B*H^2*C/((d+H)^3*A^2)-12*b*V*alpha[-2]*E*B*H/((d+H)^4*A^2)+4*b*V*alpha[-2]*B*C*H/((d+H)^3*A^2)+2*b*V*beta[1]*B*C*H/((d+H)^2*A^2)+2*b*V*alpha[-1]*B*C*H/((d+H)^2*A^2)-a*alpha[1]^2*H^2+w*beta[2]/(d+H)^2-a*beta[2]^2/(d+H)^4+w*alpha[-2]/(d+H)^2-a*alpha[-1]^2/(d+H)^2+w*beta[1]/(d+H)-a*alpha[-2]^2/(d+H)^4+2*alpha[2]*d*H-a*alpha[2]^2*H^4+w*alpha[2]*H^2+w*alpha[-1]/(d+H)+w*alpha[1]*H-a*beta[1]^2/(d+H)^2+K+alpha[1]*d+alpha[2]*d^2+w*alpha[0]-a*alpha[0]^2-6*b*V*alpha[2]*E*B*H/A^2-6*b*V*alpha[2]*E*C*H/A^2+2*b*V*alpha[-2]*B^2*H/((d+H)^3*A^2)+2*b*V*alpha[-2]*B*E/((d+H)^3*A^2)+2*b*V*alpha[-2]*C^2*H/((d+H)^3*A^2)+2*b*V*alpha[-2]*C*E/((d+H)^3*A^2)+b*V*alpha[-1]*B^2*H/((d+H)^2*A^2)+b*V*alpha[-1]*B*E/((d+H)^2*A^2)+b*V*alpha[-1]*C^2*H/((d+H)^2*A^2)+b*V*alpha[-1]*C*E/((d+H)^2*A^2)-2*b*V*alpha[2]*d*B^2*H/A^2-2*b*V*alpha[2]*d*C^2*H/A^2-8*b*V*alpha[2]*B*H^2*C/A^2+b*V*beta[1]*B^2*H/((d+H)^2*A^2)+b*V*beta[1]*B*E/((d+H)^2*A^2)+b*V*beta[1]*C^2*H/((d+H)^2*A^2)+b*V*beta[1]*C*E/((d+H)^2*A^2)+2*b*V*beta[2]*B^2*H/((d+H)^3*A^2)+2*b*V*beta[2]*B*E/((d+H)^3*A^2)+2*b*V*beta[2]*C^2*H/((d+H)^3*A^2)+2*b*V*beta[2]*C*E/((d+H)^3*A^2)-6*b*V*alpha[-2]*B^2*H^2/((d+H)^4*A^2)-6*b*V*alpha[-2]*C^2*H^2/((d+H)^4*A^2)-2*b*V*alpha[-1]*B^2*H^2/((d+H)^3*A^2)-2*b*V*alpha[-1]*C^2*H^2/((d+H)^3*A^2)-2*b*V*beta[1]*B^2*H^2/((d+H)^3*A^2)-2*b*V*beta[1]*C^2*H^2/((d+H)^3*A^2)-6*b*V*beta[2]*B^2*H^2/((d+H)^4*A^2)-6*b*V*beta[2]*C^2*H^2/((d+H)^4*A^2)-2*b*V*alpha[1]*B*C*H/A^2-2*b*V*alpha[2]*d*B*E/A^2-2*b*V*alpha[2]*d*C*E/A^2-a*alpha[1]^2*d^2+w*alpha[1]*d-a*alpha[2]^2*d^4+w*alpha[2]*d^2-2*b*V*alpha[2]*E^2/A^2-4*a*alpha[-2]*alpha[2]*d*H/(d+H)^2-4*a*alpha[-1]*alpha[2]*d*H/(d+H)-4*a*alpha[2]*d*H*beta[1]/(d+H)-4*a*alpha[2]*d*H*beta[2]/(d+H)^2-b*V*alpha[1]*B^2*H/A^2-b*V*alpha[1]*C^2*H/A^2-6*b*V*alpha[-2]*E^2/((d+H)^4*A^2)-2*b*V*alpha[-1]*E^2/((d+H)^3*A^2)-4*b*V*alpha[2]*B^2*H^2/A^2-4*b*V*alpha[2]*C^2*H^2/A^2-2*b*V*beta[1]*E^2/((d+H)^3*A^2)-6*b*V*beta[2]*E^2/((d+H)^4*A^2)-b*V*alpha[1]*B*E/A^2-b*V*alpha[1]*C*E/A^2

(9)

collect(eqq, {d+H})

Error, (in collect) cannot collect d+H

 

``

NULL

``


 

Download SHAFEEG2.mwSHAFEEG2.mw

Hey.. AoA,
How to combine a specific rows of two different Matrix?

Hi, I have a procedure named f1. In it, it calls another procedure f couple of times. procedure f does not have recursive calls implemented.

I have no idea what caused the error. Could anyone give a hint?

Thanks a million in advance,

Best,

Jie

I like Maple the most for calculation of difficult parts. But when it comes to display, I am ignorant and do not know how to command the maple for showing me what is visible in the document.

I attach herewith my document which shows in print view only top half of the sketch. What should I do to show all three figures in the portrait page.
(Here below, after uploading it is shown alright, but in the print preview it is not showing!!).

I want to convert the doc to pdf. Therefore, in the doc preview itself it should be complete.

Thanks for help.

Ramakrishnan V
 

NULL

 

NULL

 

 

 

NULL

 

 

``

NULL


 

Download sketchesNotComing_in_full.mw

Hello,

do not work well and U functions are not replaced with series form.

Please see equation 5.

Also, How me can differential with respect to the constant Amnr], Bmnr], Cmnr] as shown in   attached figure?

For Differentiation I need a

Diff.pdf

Hello! I have a Maple sheet that is functional in some versions of Maple but not others. It works perfectly in Maple 18 (which is the version with which it was written), but when running it in Maple 2019, I see the following error:

  • "Error, (in Matrix) cannot determine if this expression is true or false: Distance(Vector[row](3, {(1) = 0., (2) = 1.313799622, (3) = 0}), Vector[row](3, {(1) = 0., (2) = -1.313799622, (3) = 0})) < 99999999999999999999/100000000000000000000"

And believe that it is related to the following lines of code:

  • R := Matrix(N, (i, j) -> Distance(coords[i], coords[j]) ;
  • S := Matrix(N, (i, j) -> if i = j then 1 elif R[i, j] < 3 then (1+C*R[i, j]+(2/5)*C^2*R[i, j]^2+(1/15)*C^3*R[i, j]^3)*exp(-C*R[i, j]) else 0 end if)

It seems as if it cannot compute a distance between two points (as given in the form of two vectors). I have imported the Student:-Precalculus package, along with ArrayTools and LinearAlgebra, at the start of the sheet, but am wondering if there is an issue with this package in other versions of Maple. The full sheet can be provided if more information is needed, but I'm pretty sure that portion is the problem. Any help would be greatly appreciated.

 

Sheet: testsheet.mw

I can use ApproximateInt for the integral?

approximate_int
 

restart

``

 

"f[1,1](r,theta):=(sin(-4.700000000 10^(-6)+4.700000000 r)-0.1369508410 sinh(-4.700000000 10^(-6)+4.700000000 r)) cos(6 theta):"

"L[1, 1](r, theta):=-2* (((&PartialD;)^2)/(&PartialD;r^2) f[1,1](r,theta))+7* f[1,1](r,theta)+5 *f[1,1](r,theta)-(2 *6 (((&PartialD;)^2)/(&PartialD;theta^2) f[1,1](r,theta)))/r+(0.6 (((&PartialD;)^4)/(&PartialD;r^2&PartialD;theta^2) f[1,1](r,theta)))/4+(.5 (((&PartialD;)^4)/(&PartialD;theta^4) f[1,1](r,theta)))/4"

proc (r, theta) options operator, arrow, function_assign; -2*(diff(f[1, 1](r, theta), r, r))+12*f[1, 1](r, theta)-12*(diff(f[1, 1](r, theta), theta, theta))/r+.6*(diff(f[1, 1](r, theta), r, r, theta, theta))/4+.5*(diff(f[1, 1](r, theta), theta, theta, theta, theta))/4 end proc

(1)

``

``

 

for w to 1 do for s to 1 do k[w, s] := (int(int(L[w, s](r, theta)*f[w, 1](r, theta), theta = 0 .. 2*Pi), r = 0 .. 1))/(int(int(f[w, 1](r, theta)^2, theta = 0 .. 2*Pi), r = 0 .. 1)); print([w, s] = %) end do end do

[1, 1] = 0.3929199233e-1*(int(0.1005309649e-16*(2329569981.*r*cos(4.700000000*r)^2-0.9913063750e15*r*cos(4.700000000*r)*sin(4.700000000*r)+0.1054581250e21*r*sin(4.700000000*r)^2-328995293.4*r*cos(4.700000000*r)*cosh(4.700000000*r)+0.6999899860e14*r*cos(4.700000000*r)*sinh(4.700000000*r)+0.6999899860e14*r*sin(4.700000000*r)*cosh(4.700000000*r)-0.1489340396e20*r*sin(4.700000000*r)*sinh(4.700000000*r)+1363855.810*r*cosh(4.700000000*r)^2-0.5803641743e12*r*cosh(4.700000000*r)*sinh(4.700000000*r)+0.6174086961e17*r*sinh(4.700000000*r)^2+2982150000.*cos(4.700000000*r)^2-0.1269000000e16*cos(4.700000000*r)*sin(4.700000000*r)+0.1350000000e21*sin(4.700000000*r)^2-816815901.0*cos(4.700000000*r)*cosh(4.700000000*r)+0.1737906172e15*cos(4.700000000*r)*sinh(4.700000000*r)+0.1737906172e15*sin(4.700000000*r)*cosh(4.700000000*r)-0.3697672707e20*sin(4.700000000*r)*sinh(4.700000000*r)+55931812.29*cosh(4.700000000*r)^2-0.2380077119e14*cosh(4.700000000*r)*sinh(4.700000000*r)+0.2531996935e19*sinh(4.700000000*r)^2)/r, r = 0 .. 1))

(2)

``


 

Download approximate_int.mw

 

Hi everybody and thank you all in advance.

This is my question. Suppose I have a list of lists like this:

[[1,2,3],[7,8,9],[13,12,11]]

I want to select all 3rd element from the list of lists and get:

[3,9,11]

Another example:

[1, [2, 3], [4, [5, 6], 7], [8, 3], 9] and select the first element from the list of lists and get:

[1, 2, 4, 8, 9]

Additionally suppose I want to sort a list of lists but base on the 3rd element of every sublist. Example:

From this list:

[[1,2,3],[7,8,2],[13,12,1]] sorted by the  3rd element I would get:

[[13,12,1], [7,8,2], [1,2,3]]

 

So, I am trying to write a method for array interpolation. I have a Matrix that is X by 3, where each column holds specific data (column 1 holds independent data 1, column 2 holds independent data 2, column 3 holds dependent data).

This data comes from a function with 2 independent variables, and I am creating a graph of this function, basically, with both independent variables going from 0 to 1 (approximately 300 values per variable, giving me a matrix with 90k values already). My goal is to use interpolation to get a lot of values in between the points I already calculated.

That being said, I don't know how to use the ArrayInterpolation command to achieve this. I will post my code below if anyone can help me out!

Code:

Interpolate := proc(M::Matrix)
  local i; local j;
  local M1 := Matrix(RowDimension(M),1);
  local M2 := Matrix(RowDimension(M),1);
  local M3 := Matrix(RowDimension(M),1);
  for i from 1 to RowDimension(M) do
    M1(i) := M(i,1);
    M2(i) := M(i,2);
    M3(i) := M(i,3);
  end do;
  print(M1,M2,M3);
  local M4 := Matrix(1000,1);
  local M5 := Matrix(1000,1);
  for j from 1 to 1000 do
    M4(j,1) := 0.001*j;
    M5(j,1) := 0.001*j;
  end do;
  ArrayInterpolation([M1,M2],M3,[M4,M5]);
end proc;

How I can replace  u__0r, theta, t) with f1, 1(r, theta) in attached file.

I want in I have only f1,1] function.

Thanks 


 

````

"f[1, 1](r, theta):=`u__0`(r, theta,t)  "

proc (r, theta) options operator, arrow, function_assign; u__0(r, theta, t) end proc

(1)
``````````

"L[1, 1](r, theta):=-`A__0`*(&PartialD;)/(&PartialD;r) (F*(&PartialD;)/(&PartialD;r)`u__0`(r,theta))-1/(2)*`A__0`*(&PartialD;)/(&PartialD;r) (`K__1`*`u__0`(r,theta))+1/(2)*`A__0`*`K__1`*(&PartialD;)/(&PartialD;r)`u__0`(r,theta)-1/(2)*`A__0`*(&PartialD;)/(&PartialD; r) (`H__1`*`u__0`(r,theta))+1/(2)*`A__0`*`H__1`*(&PartialD;)/(&PartialD;r)`u__0`(r,theta)+`K__3`*`A__0`*`u__0`(r,theta)-1/(2)*`A__0`*(&PartialD;)/(&PartialD; r) (`K__4`*`u__0`(r,theta))+1/(2)*`A__0`*`K__4`*(&PartialD;)/(&PartialD;r)`u__0`(r,theta)+`A__0`*`K__5`*`u__0`(r,theta)-2*`A__0`*(&PartialD;)/(&PartialD; theta) ((`H__2`)/(r)*(&PartialD;)/(&PartialD;theta)`u__0`(r,theta))+(1)/(4)*`A__0`*l^(2)*((&PartialD;)^(2))/(&PartialD; r &PartialD; theta)(mu*((&PartialD;)^(2))/(&PartialD;r &PartialD;theta)`u__0`(r,theta))+(1)/(4)*`A__0`*l^(2)*((&PartialD;)^(2))/(&PartialD;theta^(2))(mu*((&PartialD;)^(2))/(&PartialD; theta^(2))`u__0`(r,theta))+rho*`A__0`*`K__16`*((&PartialD;)^(2))/(&PartialD;t^(2))`u__0`(r,theta);"

proc (r, theta) options operator, arrow, function_assign; -A__0*(diff(F*(diff(u__0(r, theta), r)), r))-(1/2)*A__0*(diff(K__1*u__0(r, theta), r))+(1/2)*A__0*K__1*(diff(u__0(r, theta), r))-(1/2)*A__0*(diff(H__1*u__0(r, theta), r))+(1/2)*A__0*H__1*(diff(u__0(r, theta), r))+K__3*A__0*u__0(r, theta)-(1/2)*A__0*(diff(K__4*u__0(r, theta), r))+(1/2)*A__0*K__4*(diff(u__0(r, theta), r))+A__0*K__5*u__0(r, theta)-2*A__0*(diff(H__2*(diff(u__0(r, theta), theta))/r, theta))+(1/4)*A__0*l^2*(diff(mu*(diff(u__0(r, theta), r, theta)), r, theta))+(1/4)*A__0*l^2*(diff(mu*(diff(u__0(r, theta), theta, theta)), theta, theta))+rho*A__0*K__16*(diff(u__0(r, theta), t, t)) end proc

(2)

``


 

Download replace

 

Hi
i need to find equation of intersection between a plane(Z=0)  and 3d curve like below:

plane :  Z=0

curve:

sqrt(G*(2-G))+(1-G)*(arccos(G-1)+(1/5)*Pi)+k*sqrt(G*(2-G))*cos(sqrt((1+k)/k)*arccos(G-1)+(1/5)*Pi)+sqrt(k/(1+k))*(1-G)*k*sin(sqrt((1+k)/k)*arccos(G-1)+(1/5)*Pi)

I ploted Z=0 plane and that curve . it is like this .
i want equation of the pointed curve(curve equation of intersection between Z=  and curve )in bellow  such as k=f(G) .

best regards

First 387 388 389 390 391 392 393 Last Page 389 of 2141