MaplePrimes Questions

Hi, I'm trying to solve without success numerically the following system of 15 nonlinear equations. Could anyone help, please? Thanks
 

restart

n := 0.27231149e-1:

x := 0.5116034663e-1:

F := .1561816797:

eq1 := sigma*C0 = pgamma*W*H1*(1-E0-L0)/(1+n):

eq2 := sigma*C1 = W*H1*(1-L1):

eq3 := (1+R)*C0 = (1+rho)*exp(x)*C1:

eq4 := (1+R)*C1 = (1+rho)*exp(x)*C2:

eq5 := C1 = (1+phi)*C0:

eq6 := pgamma*L0+pgamma*(1+(1+n)*F/(pgamma*W*H1))*E0+L1 = (1+R)*(1+(1+n)*F/(pgamma*W*H1))/(ppsi*exp(x))-pgamma*(1+(1+n)*F/(pgamma*W*H1))/ppsi:

eq7 := 1 = pgamma*(1+ppsi*E0)/(1+n):

eq8 := exp(x)*A1 = pgamma*W*L0*H1/(1+n)+Epsilon1-C0-F*E0:

eq9 := exp(x)*A2 = W*L1*H1+(1+R)*A1-C1-(1+n)*Epsilon1:

eq10 := (1+R)*A2 = C2:

eq11 := Y = H^alpha*K^(1-alpha):

eq12 := alpha*Y = W*H:

eq13 := (1-alpha)*Y = (1+R)*K:

eq14 := K = A1/(1+n)+A2/(1+n)^2:

eq15 := H = (pgamma*L0+L1)*H1/(1+n):

eq := {eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9, eq10, eq11, eq12, eq13, eq14, eq15}:

vars := {A1, A2, C0, C1, C2, E0, H, H1, K, L0, L1, R, W, Y, Epsilon1}:

NULL

fsolve(eq, vars); 1; assign(%)

fsolve({1 = .6865382886+.1072247031*E0, C1 = 1.475639047*C0, H = .9734907289*(.7052335150*L0+L1)*H1, K = .9734907289*A1+.9476841993*A2, Y = H^.6874443*K^.3125557, (1+R)*A2 = C2, (1+R)*C0 = 1.121850394*C1, (1+R)*C1 = 1.121850394*C2, 1.052491643*A1 = .6865382886*W*L0*H1+Epsilon1-C0-.1561816797*E0, 1.052491643*A2 = W*L1*H1+(1+R)*A1-C1-1.027231149*Epsilon1, 5.171201776*C0 = .6865382886*W*H1*(1-E0-L0), 5.171201776*C1 = W*H1*(1-L1), .3125557*Y = (1+R)*K, .6874443*Y = W*H, .7052335150*L0+.7052335150*(1+.2274915796/(W*H1))*E0+L1 = 6.083468374*(1+R)*(1+.2274915796/(W*H1))-4.515468884-1.027231149/(W*H1)}, {A1, A2, C0, C1, C2, E0, H, H1, K, L0, L1, R, W, Y, Epsilon1})

(1)

``

 

Download DDGE.mw

Could someone explain what are the main (functional) differences between professional and personal Maple editions for 2845$ and 299$ respectively?

Tx, Andras

If I store plot directions in a name, the output of that assignment is, annoyingly, a thumbnail plot. Without a way to turn that behavior off, it takes up space and is annoying. However, even more annoying is the fact that, if one enters the plot name alone in a succeeding statement in the same execution group, the plot is produced only as a thumbnail. To produce a standard size plot one has to use display(  ) along with an explicit size parameter.

Strangely enough, if the plot name alone is used in a separate execution group, a normal size plot is produced.

Is there no way to control these annoying behaviors globally?

Hi, I hope to use symbol A, B, directly to get C derivation, without using elements forms of matrix, as shown below.

How to achieve this? 

Thank you.

 

 

> coth;
                                    coth
> restart;
> c := 0;
                                      0
> w := -2*mu;
                                    -2 mu
> a[-1] := 0;
                                      0
> a[0] := mu*lambda*sqrt(-6*a);
                                            (1/2)
                            mu lambda (-6 a)     
> a[1] := (6*(mu*lambda^2+1))/sqrt(-6*a);
                               /         2    \
                             6 \mu lambda  + 1/
                             ------------------
                                      (1/2)    
                                (-6 a)         
> b[-1] := 0;
                                      0
> b[0] := 0;
                                      0
> b[1] := 0;
                                      0
> xi := x+w*t;
                                 x - 2 mu t
> P := sqrt(-mu)*coth(A+sqrt(-mu)*xi);
                     (1/2)     /         (1/2)             \
                (-mu)      coth\A + (-mu)      (x - 2 mu t)/
> u := a[0]+a[1]*P/(1+lambda*P)+a[-1]*(1+lambda*P)/P+b[0]*sqrt(sigma*(1+P^2/mu))/P+b[1]*sqrt(sigma*(1+P^2/mu))+b[-1]*sqrt(sigma*(1+P^2/mu))/P^2;
                 (1/2)
 mu lambda (-6 a)     

           /         2    \      (1/2)     /         (1/2)             \   
         6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   
    + ---------------------------------------------------------------------
            (1/2) /                (1/2)     /         (1/2)             \\
      (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//
> Diff(u, t)+a*u^2*(Diff(u, x))+Diff(u, `$`(x, 3));
/    /                     
| d  |                (1/2)
|--- |mu lambda (-6 a)     
| dt |                     
\    \                     

          /         2    \      (1/2)     /         (1/2)             \   \\     /          
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||     |          
   + ---------------------------------------------------------------------|| + a |mu lambda
           (1/2) /                (1/2)     /         (1/2)             \\||     |          
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////     \          

        (1/2)
  (-6 a)     

          /         2    \      (1/2)     /         (1/2)             \   \   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   |   
   + ---------------------------------------------------------------------|^2
           (1/2) /                (1/2)     /         (1/2)             \\|   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)///   

  /    /                     
  | d  |                (1/2)
  |--- |mu lambda (-6 a)     
  | dx |                     
  \    \                     

          /         2    \      (1/2)     /         (1/2)             \   \\   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||   
   + ---------------------------------------------------------------------|| +
           (1/2) /                (1/2)     /         (1/2)             \\||   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////   

  / 3 /                     
  |d  |                (1/2)
  |-- |mu lambda (-6 a)     
  |   |                     
  \   \                     

          /         2    \      (1/2)     /         (1/2)             \   \\
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   ||
   + ---------------------------------------------------------------------||
           (1/2) /                (1/2)     /         (1/2)             \\||
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)////
> value(%);
                          /                                     2\      
     /         2    \   2 |        /         (1/2)             \ |      
  12 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /      
--------------------------------------------------------------------- -
      (1/2) /                (1/2)     /         (1/2)             \\   
(-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   

                                                                         /   
                                    1                                    |   
  ---------------------------------------------------------------------- \12
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                                           /
  /         2    \      (1/2)     /         (1/2)             \          2 |
  \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda mu  \1

                                      2\\     /                     
         /         (1/2)             \ ||     |                (1/2)
   - coth\A + (-mu)      (x - 2 mu t)/ // + a |mu lambda (-6 a)     
                                              |                     
                                              \                     

          /         2    \      (1/2)     /         (1/2)             \   \   
        6 \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/   |   
   + ---------------------------------------------------------------------|^2
           (1/2) /                (1/2)     /         (1/2)             \\|   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)///   

  /                           /                                     2\       
  |       /         2    \    |        /         (1/2)             \ |       
  |     6 \mu lambda  + 1/ mu \1 - coth\A + (-mu)      (x - 2 mu t)/ /       
  |- --------------------------------------------------------------------- +
  |        (1/2) /                (1/2)     /         (1/2)             \\   
  |  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   
  \                                                                          

                                                                         /      
                                    1                                    |  /   
  ---------------------------------------------------------------------- \6 \mu
                                                                       2        
        (1/2) /                (1/2)     /         (1/2)             \\         
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//         

                                                                      /
        2    \      (1/2)     /         (1/2)             \           |
  lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda mu \1

                                         \
                                      2\\|
         /         (1/2)             \ |||
   - coth\A + (-mu)      (x - 2 mu t)/ //|
                                         |
                                         |
                                         /

                                                                       2     
                               /                                     2\      
          /         2    \   2 |        /         (1/2)             \ |      
       12 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /      
   - --------------------------------------------------------------------- +
           (1/2) /                (1/2)     /         (1/2)             \\   
     (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//   

                                                                        /       
                                    1                                   |   /   
  --------------------------------------------------------------------- \24 \mu
        (1/2) /                (1/2)     /         (1/2)             \\         
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//         

                                                    2 /
        2    \   2     /         (1/2)             \  |
  lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  \1

                                      2\\   
         /         (1/2)             \ ||   
   - coth\A + (-mu)      (x - 2 mu t)/ // +

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \84
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

  /         2    \   2     /         (1/2)             \
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/

                                          2                  \
  /                                     2\                   |
  |        /         (1/2)             \ |       (1/2)       |
  \1 - coth\A + (-mu)      (x - 2 mu t)/ /  (-mu)      lambda/

                                                                     3           
                             /                                     2\            
        /         2    \   3 |        /         (1/2)             \ |        2   
     36 \mu lambda  + 1/ mu  \1 - coth\A + (-mu)      (x - 2 mu t)/ /  lambda    
   - ------------------------------------------------------------------------- +
                                                                           3     
            (1/2) /                (1/2)     /         (1/2)             \\      
      (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \36
                                                                       4     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

  /         2    \      (1/2)     /         (1/2)             \       3   3
  \mu lambda  + 1/ (-mu)      coth\A + (-mu)      (x - 2 mu t)/ lambda  mu  

                                          3\   
  /                                     2\ |   
  |        /         (1/2)             \ | |   
  \1 - coth\A + (-mu)      (x - 2 mu t)/ / / +

                                                                         /   
                                                                         |   
                                    1                                    |   
  ---------------------------------------------------------------------- \72
                                                                       3     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                        2         
  /         2    \   3     /         (1/2)             \        2
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  lambda  

                                          2\   
  /                                     2\ |   
  |        /         (1/2)             \ | |   
  \1 - coth\A + (-mu)      (x - 2 mu t)/ / / -

                                                                         /   
                                    1                                    |   
  ---------------------------------------------------------------------- \24
                                                                       2     
        (1/2) /                (1/2)     /         (1/2)             \\      
  (-6 a)      \1 + lambda (-mu)      coth\A + (-mu)      (x - 2 mu t)//      

                                                        3        /
  /         2    \   2     /         (1/2)             \         |
  \mu lambda  + 1/ mu  coth\A + (-mu)      (x - 2 mu t)/  lambda \1

                                      2\           \
         /         (1/2)             \ |      (1/2)|
   - coth\A + (-mu)      (x - 2 mu t)/ / (-mu)     /
> simplify(%);
Error, (in simplify/tools/_zn) too many levels of recursion
>
>
>
>
pls help

I'm not sure why im getting a complex solution for evalf(h(-1/2)). Posted screenshot here:

http://prntscr.com/8abmta

The answer should be positive 6*2^(2/3) ≈ 9.52

 The computer returns

h(-1/2) =

=

The problem is that evalf((-1)^(1/3)) you get 0.500 + .866I

Is there no way to evaluate a second derivative of a real valued function which has a fractional exponent without receiving complex results? I don't have the time to look at each function and try to figure out what went wrong. I want to plug in any x value into a function defined for all reals and get a real result.

I tried  assume(x , 'real' ) , that did not do anything.

 

    

hi, I just want to calculate Adomian's polynomial but does not got  desire result,plz helpADMP.mw

hi .how i can solve nonlinear equation with unknown prameter omega as below

thanksfrekans.mw

Hi All,

 

I have o problem with simplify. A variable cp1r has been assumed to be positive. Why simplify still has csgn(cp1r) for it? Here is my code:

tmp := subs(cp1t(t)=cp1r, cp2t(t)=cp2r, Ca[2]);
1 / 2 2
----------- |-cp2r sin(x[1]) sin(x[7]) cp1r
2 2 |
cp1r cp2r |
\

2
+ 2 cp2r sin(x[1]) cos(x[1]) cos(x[7]) sin(x[7]) cp1r +

1 / 2 2 /
-------------- \cp2r cos(x[1]) cos(x[7]) sin(x[7]) \
(1/2)
/ 2\
2 \cp1r /
2 \\\
-2 cos(x[1]) cos(x[7]) sin(x[1]) + 2 sin(x[1]) cos(x[1])//|
|
|
/
assume(cp1r > 0, cp2r > 0);
simplify(tmp);
1 / / 3 3
---------- \sin(x[1]) sin(x[7]) \-cos(x[1]) cos(x[7])
2
cp1r cp1r

+ 2 cos(x[1]) cos(x[7]) cp1r csgn(cp1r) cp1r

2 3 \ \

- cp1r csgn(cp1r) cp1r + cos(x[1]) cos(x[7])/ csgn(cp1r)/

 

should csgn(cp1r) be simplified to 1 already? What is wrong with my script?

 

Thanks 

Everett

Maple does not cope with the following simple example:

with(geom3d):

point(A,0,0,0), point(B,1,0,0), point(C,2,0,0), point(E,2,1,0):

AreCoplanar(A,B,C,E);

           Error, (in geom3d:-plane) the points may not be AreCollinear

 

Should we interpret this behavior as a bug? I think I met with this yet 10-12 years ago, but unfortunately since then nothing has changed.

I have the following PDE:

 

u_xx = u_tt + (2^{1/2}u_x-u)^{1/2}

 

Do you have a proposed algorithm to solve in maple for this PDE? I mean pdsolve won't solve it because it's a nonlinear PDE.

 

Hi All,

 

I am working on modeling dynamics for a robot. It requires a write some long expressions into C++.  When I do it, it has some strange problem in creation of C++ code from a vector.

Here is an example of the problem. I have a multivariable polynomial term, I using coeffs to get its coefficients and corresponding unevaluated variables, which works fine. But I can't convert the vector into C++

Ca := coeffs(term, [W, Rf, Rr, dxf, rcf, rcr], 'L'):

L;                           Rf, Rr, dxf

C(L, resultname="L11", output="dSpDdx1.cpp");

Error, (in Translate) options [Rr, dxf] not recognized.

I don't know why maple thought the unevaluated variable Rr and dxf are options instead of the vector I want to convert into c++. Does any one know what I did wrong?

 

Thanks in advance.

 

Everett

Just purchased Maple 2015 and playing with it for the first time.  I'm running the 64-bit version on Win 8.1.

Anytime the program generates a pop-up dialog box, the pop-up seems to get stuck behind the main program window.  I can't alt+tab to get to the pop-up window and I can't click on anything in the main program window because it's frozen while waiting for me to aknowledge the pop-up dialog box.  So I have to kill everything from the task manager and lose anything that's unsaved.

I'm talking about pop-ups for things like "Error, (in @@) invalid arguments"... I click on the link and see a brief flash while that pop-up quickly flies behind the main window.  Same thing happens when I click on a link that asks what web browser I want to use.

 

I can't be the only one that has this problem, so is there a fix or workaround for this somewhere?  It's not really useable like this.  Thanks!

First 1242 1243 1244 1245 1246 1247 1248 Last Page 1244 of 2434