Antonio_S

259 Reputation

4 Badges

17 years, 235 days

MaplePrimes Activity


These are answers submitted by Antonio_S

just to add that the procedure takes 2 integers d and e, tests them for being comprime (if gcd(d,e) = 1 then), picks up each pair from the above list (a,b) and returns the list of unique common solutions for each pair. The line of output should look something like this (if d=2 and e=11): UCS(2,11) = 0, 1, 2, 3, 4...15, 16... (using [[0, 0], [1, 1], [0, 2], [1, 3], [0, 4] ...[1, 4], [0, 5]...as a and b
seem to have found one way to answer this, but it only works when you put all the numbers from 3 sets into the same set as detailed below, it automatically sorts the numbers in the ascending order; > (combinat[permute])({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 3); [[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 1, 5], [0, 1, 6], [0, 1, 7], [0, 1, 8], [0, 1, 9], [0, 2, 1], [0, 2, 3], [0, 2, 4], [0, 2, 5], [0, 2, 6], [0, 2, 7], [0, 2, 8], [0, 2, 9], [0, 3, 1], [0, 3, 2], [0, 3, 4], [0, 3, 5], [0, 3, 6], [0, 3, 7], [0, 3, 8], [0, 3, 9], [0, 4, 1], [0, 4, 2], [0, 4, 3], [0, 4, 5], [0, 4, 6], [0, 4, 7], [0, 4, 8], [0, 4, 9], [0, 5, 1], [0, 5, 2], [0, 5, 3], [0, 5, 4], [0, 5, 6], [0, 5, 7], [0, 5, 8], [0, 5, 9], [0, 6, 1], [0, 6, 2], [0, 6, 3], [0, 6, 4], [0, 6, 5], [0, 6, 7], [0, 6, 8], [0, 6, 9], [0, 7, 1], [0, 7, 2], [0, 7, 3], [0, 7, 4], [0, 7, 5], [0, 7, 6], [0, 7, 8], [0, 7, 9], [0, 8, 1], [0, 8, 2], [0, 8, 3], [0, 8, 4], [0, 8, 5], [0, 8, 6], [0, 8, 7], [0, 8, 9], [0, 9, 1], [0, 9, 2], [0, 9, 3], [0, 9, 4], [0, 9, 5], [0, 9, 6], [0, 9, 7], [0, 9, 8], [1, 0, 2], [1, 0, 3], [1, 0, 4], [1, 0, 5], [1, 0, 6], [1, 0, 7], [1, 0, 8], [1, 0, 9], [1, 2, 0], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 2, 6], [1, 2, 7], [1, 2, 8], [1, 2, 9], [1, 3, 0], [1, 3, 2], [1, 3, 4], [1, 3, 5], [1, 3, 6], [1, 3, 7], [1, 3, 8], [1, 3, 9], [1, 4, 0], [1, 4, 2], [1, 4, 3], [1, 4, 5], [1, 4, 6], [1, 4, 7], [1, 4, 8], [1, 4, 9], [1, 5, 0], [1, 5, 2], [1, 5, 3], [1, 5, 4], [1, 5, 6], [1, 5, 7], [1, 5, 8], [1, 5, 9], [1, 6, 0], [1, 6, 2], [1, 6, 3], [1, 6, 4], [1, 6, 5], [1, 6, 7], [1, 6, 8], [1, 6, 9], [1, 7, 0], [1, 7, 2], [1, 7, 3], [1, 7, 4], [1, 7, 5], [1, 7, 6], [1, 7, 8], [1, 7, 9], [1, 8, 0], [1, 8, 2], [1, 8, 3], [1, 8, 4], [1, 8, 5], [1, 8, 6], [1, 8, 7], [1, 8, 9], [1, 9, 0], [1, 9, 2], [1, 9, 3], [1, 9, 4], [1, 9, 5], [1, 9, 6], [1, 9, 7], [1, 9, 8], [2, 0, 1], [2, 0, 3], [2, 0, 4], [2, 0, 5], [2, 0, 6], [2, 0, 7], [2, 0, 8], [2, 0, 9], [2, 1, 0], [2, 1, 3], [2, 1, 4], [2, 1, 5], [2, 1, 6], [2, 1, 7], [2, 1, 8], [2, 1, 9], [2, 3, 0], [2, 3, 1], [2, 3, 4], [2, 3, 5], [2, 3, 6], [2, 3, 7], [2, 3, 8], [2, 3, 9], [2, 4, 0], [2, 4, 1], [2, 4, 3], [2, 4, 5], [2, 4, 6], [2, 4, 7], [2, 4, 8], [2, 4, 9], [2, 5, 0], [2, 5, 1], [2, 5, 3], [2, 5, 4], [2, 5, 6], [2, 5, 7], [2, 5, 8], [2, 5, 9], [2, 6, 0], [2, 6, 1], [2, 6, 3], [2, 6, 4], [2, 6, 5], [2, 6, 7], [2, 6, 8], [2, 6, 9], [2, 7, 0], [2, 7, 1], [2, 7, 3], [2, 7, 4], [2, 7, 5], [2, 7, 6], [2, 7, 8], [2, 7, 9], [2, 8, 0], [2, 8, 1], [2, 8, 3], [2, 8, 4], [2, 8, 5], [2, 8, 6], [2, 8, 7], [2, 8, 9], [2, 9, 0], [2, 9, 1], [2, 9, 3], [2, 9, 4], [2, 9, 5], [2, 9, 6], [2, 9, 7], [2, 9, 8], [3, 0, 1], [3, 0, 2], [3, 0, 4], [3, 0, 5], [3, 0, 6], [3, 0, 7], [3, 0, 8], [3, 0, 9], [3, 1, 0], [3, 1, 2], [3, 1, 4], [3, 1, 5], [3, 1, 6], [3, 1, 7], [3, 1, 8], [3, 1, 9], [3, 2, 0], [3, 2, 1], [3, 2, 4], [3, 2, 5], [3, 2, 6], [3, 2, 7], [3, 2, 8], [3, 2, 9], [3, 4, 0], [3, 4, 1], [3, 4, 2], [3, 4, 5], [3, 4, 6], [3, 4, 7], [3, 4, 8], [3, 4, 9], [3, 5, 0], [3, 5, 1], [3, 5, 2], [3, 5, 4], [3, 5, 6], [3, 5, 7], [3, 5, 8], [3, 5, 9], [3, 6, 0], [3, 6, 1], [3, 6, 2], [3, 6, 4], [3, 6, 5], [3, 6, 7], [3, 6, 8], [3, 6, 9], [3, 7, 0], [3, 7, 1], [3, 7, 2], [3, 7, 4], [3, 7, 5], [3, 7, 6], [3, 7, 8], [3, 7, 9], [3, 8, 0], [3, 8, 1], [3, 8, 2], [3, 8, 4], [3, 8, 5], [3, 8, 6], [3, 8, 7], [3, 8, 9], [3, 9, 0], [3, 9, 1], [3, 9, 2], [3, 9, 4], [3, 9, 5], [3, 9, 6], [3, 9, 7], [3, 9, 8], [4, 0, 1], [4, 0, 2], [4, 0, 3], [4, 0, 5], [4, 0, 6], [4, 0, 7], [4, 0, 8], [4, 0, 9], [4, 1, 0], [4, 1, 2], [4, 1, 3], [4, 1, 5], [4, 1, 6], [4, 1, 7], [4, 1, 8], [4, 1, 9], [4, 2, 0], [4, 2, 1], [4, 2, 3], [4, 2, 5], [4, 2, 6], [4, 2, 7], [4, 2, 8], [4, 2, 9], [4, 3, 0], [4, 3, 1], [4, 3, 2], [4, 3, 5], [4, 3, 6], [4, 3, 7], [4, 3, 8], [4, 3, 9], [4, 5, 0], [4, 5, 1], [4, 5, 2], [4, 5, 3], [4, 5, 6], [4, 5, 7], [4, 5, 8], [4, 5, 9], [4, 6, 0], [4, 6, 1], [4, 6, 2], [4, 6, 3], [4, 6, 5], [4, 6, 7], [4, 6, 8], [4, 6, 9], [4, 7, 0], [4, 7, 1], [4, 7, 2], [4, 7, 3], [4, 7, 5], [4, 7, 6], [4, 7, 8], [4, 7, 9], [4, 8, 0], [4, 8, 1], [4, 8, 2], [4, 8, 3], [4, 8, 5], [4, 8, 6], [4, 8, 7], [4, 8, 9], [4, 9, 0], [4, 9, 1], [4, 9, 2], [4, 9, 3], [4, 9, 5], [4, 9, 6], [4, 9, 7], [4, 9, 8], [5, 0, 1], [5, 0, 2], [5, 0, 3], [5, 0, 4], [5, 0, 6], [5, 0, 7], [5, 0, 8], [5, 0, 9], [5, 1, 0], [5, 1, 2], [5, 1, 3], [5, 1, 4], [5, 1, 6], [5, 1, 7], [5, 1, 8], [5, 1, 9], [5, 2, 0], [5, 2, 1], [5, 2, 3], [5, 2, 4], [5, 2, 6], [5, 2, 7], [5, 2, 8], [5, 2, 9], [5, 3, 0], [5, 3, 1], [5, 3, 2], [5, 3, 4], [5, 3, 6], [5, 3, 7], [5, 3, 8], [5, 3, 9], [5, 4, 0], [5, 4, 1], [5, 4, 2], [5, 4, 3], [5, 4, 6], [5, 4, 7], [5, 4, 8], [5, 4, 9], [5, 6, 0], [5, 6, 1], [5, 6, 2], [5, 6, 3], [5, 6, 4], [5, 6, 7], [5, 6, 8], [5, 6, 9], [5, 7, 0], [5, 7, 1], [5, 7, 2], [5, 7, 3], [5, 7, 4], [5, 7, 6], [5, 7, 8], [5, 7, 9], [5, 8, 0], [5, 8, 1], [5, 8, 2], [5, 8, 3], [5, 8, 4], [5, 8, 6], [5, 8, 7], [5, 8, 9], [5, 9, 0], [5, 9, 1], [5, 9, 2], [5, 9, 3], [5, 9, 4], [5, 9, 6], [5, 9, 7], [5, 9, 8], [6, 0, 1], [6, 0, 2], [6, 0, 3], [6, 0, 4], [6, 0, 5], [6, 0, 7], [6, 0, 8], [6, 0, 9], [6, 1, 0], [6, 1, 2], [6, 1, 3], [6, 1, 4], [6, 1, 5], [6, 1, 7], [6, 1, 8], [6, 1, 9], [6, 2, 0], [6, 2, 1], [6, 2, 3], [6, 2, 4], [6, 2, 5], [6, 2, 7], [6, 2, 8], [6, 2, 9], [6, 3, 0], [6, 3, 1], [6, 3, 2], [6, 3, 4], [6, 3, 5], [6, 3, 7], [6, 3, 8], [6, 3, 9], [6, 4, 0], [6, 4, 1], [6, 4, 2], [6, 4, 3], [6, 4, 5], [6, 4, 7], [6, 4, 8], [6, 4, 9], [6, 5, 0], [6, 5, 1], [6, 5, 2], [6, 5, 3], [6, 5, 4], [6, 5, 7], [6, 5, 8], [6, 5, 9], [6, 7, 0], [6, 7, 1], [6, 7, 2], [6, 7, 3], [6, 7, 4], [6, 7, 5], [6, 7, 8], [6, 7, 9], [6, 8, 0], [6, 8, 1], [6, 8, 2], [6, 8, 3], [6, 8, 4], [6, 8, 5], [6, 8, 7], [6, 8, 9], [6, 9, 0], [6, 9, 1], [6, 9, 2], [6, 9, 3], [6, 9, 4], [6, 9, 5], [6, 9, 7], [6, 9, 8], [7, 0, 1], [7, 0, 2], [7, 0, 3], [7, 0, 4], [7, 0, 5], [7, 0, 6], [7, 0, 8], [7, 0, 9], [7, 1, 0], [7, 1, 2], [7, 1, 3], [7, 1, 4], [7, 1, 5], [7, 1, 6], [7, 1, 8], [7, 1, 9], [7, 2, 0], [7, 2, 1], [7, 2, 3], [7, 2, 4], [7, 2, 5], [7, 2, 6], [7, 2, 8], [7, 2, 9], [7, 3, 0], [7, 3, 1], [7, 3, 2], [7, 3, 4], [7, 3, 5], [7, 3, 6], [7, 3, 8], [7, 3, 9], [7, 4, 0], [7, 4, 1], [7, 4, 2], [7, 4, 3], [7, 4, 5], [7, 4, 6], [7, 4, 8], [7, 4, 9], [7, 5, 0], [7, 5, 1], [7, 5, 2], [7, 5, 3], [7, 5, 4], [7, 5, 6], [7, 5, 8], [7, 5, 9], [7, 6, 0], [7, 6, 1], [7, 6, 2], [7, 6, 3], [7, 6, 4], [7, 6, 5], [7, 6, 8], [7, 6, 9], [7, 8, 0], [7, 8, 1], [7, 8, 2], [7, 8, 3], [7, 8, 4], [7, 8, 5], [7, 8, 6], [7, 8, 9], [7, 9, 0], [7, 9, 1], [7, 9, 2], [7, 9, 3], [7, 9, 4], [7, 9, 5], [7, 9, 6], [7, 9, 8], [8, 0, 1], [8, 0, 2], [8, 0, 3], [8, 0, 4], [8, 0, 5], [8, 0, 6], [8, 0, 7], [8, 0, 9], [8, 1, 0], [8, 1, 2], [8, 1, 3], [8, 1, 4], [8, 1, 5], [8, 1, 6], [8, 1, 7], [8, 1, 9], [8, 2, 0], [8, 2, 1], [8, 2, 3], [8, 2, 4], [8, 2, 5], [8, 2, 6], [8, 2, 7], [8, 2, 9], [8, 3, 0], [8, 3, 1], [8, 3, 2], [8, 3, 4], [8, 3, 5], [8, 3, 6], [8, 3, 7], [8, 3, 9], [8, 4, 0], [8, 4, 1], [8, 4, 2], [8, 4, 3], [8, 4, 5], [8, 4, 6], [8, 4, 7], [8, 4, 9], [8, 5, 0], [8, 5, 1], [8, 5, 2], [8, 5, 3], [8, 5, 4], [8, 5, 6], [8, 5, 7], [8, 5, 9], [8, 6, 0], [8, 6, 1], [8, 6, 2], [8, 6, 3], [8, 6, 4], [8, 6, 5], [8, 6, 7], [8, 6, 9], [8, 7, 0], [8, 7, 1], [8, 7, 2], [8, 7, 3], [8, 7, 4], [8, 7, 5], [8, 7, 6], [8, 7, 9], [8, 9, 0], [8, 9, 1], [8, 9, 2], [8, 9, 3], [8, 9, 4], [8, 9, 5], [8, 9, 6], [8, 9, 7], [9, 0, 1], [9, 0, 2], [9, 0, 3], [9, 0, 4], [9, 0, 5], [9, 0, 6], [9, 0, 7], [9, 0, 8], [9, 1, 0], [9, 1, 2], [9, 1, 3], [9, 1, 4], [9, 1, 5], [9, 1, 6], [9, 1, 7], [9, 1, 8], [9, 2, 0], [9, 2, 1], [9, 2, 3], [9, 2, 4], [9, 2, 5], [9, 2, 6], [9, 2, 7], [9, 2, 8], [9, 3, 0], [9, 3, 1], [9, 3, 2], [9, 3, 4], [9, 3, 5], [9, 3, 6], [9, 3, 7], [9, 3, 8], [9, 4, 0], [9, 4, 1], [9, 4, 2], [9, 4, 3], [9, 4, 5], [9, 4, 6], [9, 4, 7], [9, 4, 8], [9, 5, 0], [9, 5, 1], [9, 5, 2], [9, 5, 3], [9, 5, 4], [9, 5, 6], [9, 5, 7], [9, 5, 8], [9, 6, 0], [9, 6, 1], [9, 6, 2], [9, 6, 3], [9, 6, 4], [9, 6, 5], [9, 6, 7], [9, 6, 8], [9, 7, 0], [9, 7, 1], [9, 7, 2], [9, 7, 3], [9, 7, 4], [9, 7, 5], [9, 7, 6], [9, 7, 8], [9, 8, 0], [9, 8, 1], [9, 8, 2], [9, 8, 3], [9, 8, 4], [9, 8, 5], [9, 8, 6], [9, 8, 7]] Is there any command in Maple that takes 3 sets and produces combinations in the following order: [A1,B1,C1], [A2,B1,C1], [A3,B1,C1], [A4,B1,C1], [A1,B2,C1] thanks
1 2 3 Page 3 of 3