janhardo

695 Reputation

12 Badges

11 years, 38 days

MaplePrimes Activity


These are replies submitted by janhardo

@janhardo 

Ok, i posted a double post ..it slipped in and the post of @nm 6131 and @kitonum are removed

The question was there was how to rearrange this  complex ln expression 

I*ln(-z*I + b) - ln(z*I + b);

As you can see i did it by hand too, but don't know if it is right? :

I*ln(-z*I + b) - ln(z*I + b)= I*ln ((-z*I + b)/(z*I + b));      gives (16) see above 

If i remember the answer from nm 6131 it was like this :
expr : = I*ln(-z*I + b) - ln(z*I + b); 
I*simplify(log(exp(1)*(expr)) ;   ?        (in general : ln x^a = a*ln x)  or  take ln^a             

Note: should be nice  to  have the answer of @nm 6131 and @kitonum back again

@Kitonum 

Thanks

Your calculation brings  me back to the direction of the start formula 

@nm 

Thanks

Seems that mathematica is more advanced then Maple? 
Well, i stay  with Maple, because learning again a new language for Mathematica is too much. 

Surprize, the manual derivation of the ln expression seems to be correct what i did by hand. (it is the same as your Maple calculation)
But your  code example shows me that i must practice with this ..

Not capable of not using advanced commands makes it neccesary to know the basic rules 
Its here : a power of a logarithm with base e : 


  ln x^n =  n.ln x 

The answer of @acer is almost the same as in the picture 
Now i tried it doing also, but with easier commands... how far do i come to the wanted answer? 

restart;with(plots): # made by @acer

A := Int(1/(b^2 + zz^2), zz = 0 .. z);

Int(1/(b^2+zz^2), zz = 0 .. z)

(1)

value(A);

arctan(z/b)/b

(2)

convert(value(A),ln);

((1/2)*I)*(ln(1-I*z/b)-ln(1+I*z/b))/b

(3)

combine(expand(I*convert(value(A),ln)), symbolic)/I;

-((1/2)*I)*ln(-(I*z+b)/(I*z-b))/b

(4)

 

A little manipulation can grind the above into a form with the target leading sign, etc.

 

evalindets(%, specfunc(ln),
           u->ln(expand(sign(numer(op(u)))*numer(op(u)))
                 /expand(sign(numer(op(u)))*denom(op(u)))));

-((1/2)*I)*ln((I*z+b)/(-I*z+b))/b

(5)

ans := sort(%, order=plex(b,z));

-((1/2)*I)*ln((b+I*z)/(b-I*z))/b

(6)

simplify( combine( convert( value(A) - ans, ln ), symbolic) );

0

(7)

 

 

 

plot3d([Re,Im](arctan(z/b)/b-ans),b=-4..4,z=-4..4,
       color=[red,blue],grid=[100,100],view=-1e-14..1e-14):

 

 

================================ made by  @janhardo

 

I started also trying to get  on the wanted formula

restart;

A := Int(1/(b^2 + z^2), z = 0 .. z);

Int(1/(b^2+z^2), z = 0 .. z)

(8)

value(A);

arctan(z/b)/b

(9)

A1:=convert(value(A),ln);

((1/2)*I)*(ln(1-I*z/b)-ln(1+I*z/b))/b

(10)

A2:=expand(A1):%=combine(%);

((1/2)*I)*ln(1-I*z/b)/b-((1/2)*I)*ln(1+I*z/b)/b = ((1/2)*I)*(ln(1-I*z/b)-ln(1+I*z/b))/b

(11)

A3:=simplify(A2,symbolic);

((1/2)*I)*(ln(-I*z+b)-ln(I*z+b))/b

(12)

A4:=denom(A3);

2*b

(13)

A5:=numer(A3);

I*(ln(-I*z+b)-ln(I*z+b))

(14)

 

 THIS  IS DID BY HAND : (not knowing if possible, this is forum question ) ..i am trying to get a wanted  expression

 

I*ln(-z*I + b) - ln(z*I + b)= I*ln ((-z*I + b)/(z*I + b));# see forum question

I*ln(-I*z+b)-ln(I*z+b) = I*ln((-I*z+b)/(I*z+b))

(15)

 

 

And so on.. If some  of the high level commands are advanced, then a step back

 


 

Download handmatig_betrekking_logaritmisch_en_goniometrisch_forum_nm_6131.mw

@Carl Love 

Thanks

It is clear that after reading your step by step explanation i ever never could deduct this by meself, the working of combination of commands.
For instance could not give meaning to [Re,Im](J1) and the nested simplify command.
Very helpful to try understand the whole picture better with all details involved.

@Carl Love Thanks

It seems that the base-10 logarithm is not the logarithm be found in higher level mathematics..
A ln logarithm use is widespread,why is that, i can't give the answer .
The number e is popping up everwhere in math.

The derative value of e^x is e^x value for x
Also the e^x function can never be 0 
Its a remarkable  number e

@acer  Thanks

restart;with(plots):

A := Int(1/(b^2 + zz^2), zz = 0 .. z);

Int(1/(b^2+zz^2), zz = 0 .. z)

(1)

value(A);

arctan(z/b)/b

(2)

convert(value(A),ln);

((1/2)*I)*(ln(1-I*z/b)-ln(1+I*z/b))/b

(3)

combine(expand(I*convert(value(A),ln)), symbolic)/I;

-((1/2)*I)*ln(-(I*z+b)/(I*z-b))/b

(4)

 

A little manipulation can grind the above into a form with the target leading sign, etc.

 

evalindets(%, specfunc(ln),
           u->ln(expand(sign(numer(op(u)))*numer(op(u)))
                 /expand(sign(numer(op(u)))*denom(op(u)))));

-((1/2)*I)*ln((I*z+b)/(-I*z+b))/b

(5)

ans := sort(%, order=plex(b,z));

-((1/2)*I)*ln((b+I*z)/(b-I*z))/b

(6)

simplify( combine( convert( value(A) - ans, ln ), symbolic) );

0

(7)

 

 

 

plot3d([Re,Im](arctan(z/b)/b-ans),b=-4..4,z=-4..4,
       color=[red,blue],grid=[100,100],view=-1e-14..1e-14);

 

restart;

A := Int(1/(b^2 + z^2), z = 0 .. z);

Int(1/(b^2+z^2), z = 0 .. z)

(8)

value(A);

arctan(z/b)/b

(9)

A1:=convert(value(A),ln);

((1/2)*I)*(ln(1-I*z/b)-ln(1+I*z/b))/b

(10)

A2:=expand(A1):%=combine(%);

((1/2)*I)*ln(1-I*z/b)/b-((1/2)*I)*ln(1+I*z/b)/b = ((1/2)*I)*(ln(1-I*z/b)-ln(1+I*z/b))/b

(11)

A3:=simplify(A2,symbolic);

((1/2)*I)*(ln(-I*z+b)-ln(I*z+b))/b

(12)

A4:=denom(A3);

2*b

(13)

A5:=numer(A3);

I*(ln(-I*z+b)-ln(I*z+b))

(14)

simplify(A5,symbolic);

I*(ln(-I*z+b)-ln(I*z+b))

(15)

I*ln(-z*I + b) - ln(z*I + b)= I*ln ((-z*I + b)/(z*I + b));

I*ln(-I*z+b)-ln(I*z+b) = I*ln((-I*z+b)/(I*z+b))

(16)

 

 

And so on.. If some  of the high level commands are advanced, then a step back
If i can make (16)  from 
I*ln(-z*I + b) - ln(z*I + b)
a fraction?

 

Download handmatig_betrekking_logaritmisch_en_goniometrisch.mw

@acer

Thanks

So your claim about my Maple result being "almost correct" except that I "is still there" is not right. 

---------------------------

I overlooked the  i  ..it is  in there  , you are right. ( comes that i am so used at the normal variables naming) 
I think you have checked that your answer with simplify if it was correct ?
Cannot recognize yet the book answer with your answer unfortanely if both are the same 

@vv 

Informative website for me getting more insight in the complex analysis

Complex Analysis (complex-analysis.com)

@acer

This answer you got has  minus sign and a I inside , but  the bookanswer has no  - and a I next to  ln  
It proves how you must be careful to type the right expression, but is all a little bit complicated to get this expression not in Maple input here as post 

 

 -((1/2)*I)*ln((b+I*z)/(b-I*z))/b

@janhardo 

 

         
J:= Int(exp(t*x), x);
J1:= subs(t= alpha+beta*I, J);
evalc(J1);
value(%);
simplify(convert(diff(%, x), exp), {a+b*I= t});

Int(exp(t*x), x)

 

Int(exp((alpha+I*beta)*x), x)

 

Int(exp(x*alpha)*cos(x*beta), x)+I*(Int(exp(x*alpha)*sin(x*beta), x))

 

alpha*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+beta*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2)+I*(-beta*exp(x*alpha)*cos(x*beta)/(alpha^2+beta^2)+alpha*exp(x*alpha)*sin(x*beta)/(alpha^2+beta^2))

 

exp((alpha+I*beta)*x)

(1)

#==========================================

restart;         
J:= Int(exp(t*x), x);
J1:= subs((SUB:= t= alpha+beta*I), J);
J2:= evalc([Re,Im](J1));
J3:= J2 =~ simplify(value(J2));
print~(J3):
 
#reversion to original integrand:
simplify(
    convert(diff(evalc(Complex(rhs~(J3)[])), x), exp),
    {rhs=lhs}(SUB)
);

Int(exp(t*x), x)

 

Int(exp((alpha+I*beta)*x), x)

 

[Int(exp(x*alpha)*cos(x*beta), x), Int(exp(x*alpha)*sin(x*beta), x)]

 

[Int(exp(x*alpha)*cos(x*beta), x) = exp(x*alpha)*(beta*sin(x*beta)+cos(x*beta)*alpha)/(alpha^2+beta^2), Int(exp(x*alpha)*sin(x*beta), x) = exp(x*alpha)*(sin(x*beta)*alpha-beta*cos(x*beta))/(alpha^2+beta^2)]

 

Int(exp(x*alpha)*cos(x*beta), x) = exp(x*alpha)*(beta*sin(x*beta)+cos(x*beta)*alpha)/(alpha^2+beta^2)

 

Int(exp(x*alpha)*sin(x*beta), x) = exp(x*alpha)*(sin(x*beta)*alpha-beta*cos(x*beta))/(alpha^2+beta^2)

 

exp(t*x)

(2)

#================================================

 

The difference in code starts with  evalc and the use of  J,J1,J2 and J3 makes it easier to read

Its a difficult command : J2:= evalc([Re,Im](J1)); in order to get rid of the I symbol, and probably there is no need for?
I must study further this to see how it excactly works.

 

Can you explain in your own words how this second code works ?       

Download complex_integration-tom_apostel_example_-bernouille.mw

@acer 

Thanks

Your code is also a difficult one to understand quick , so perhaps you can explain this in your own words too for me to get a idea for me.

It was tricky, because this  expression written (see hereunder)i s not the same in Holland or America/England? 
Log and ln are the same in America ( and in the book example too probably) and not in Holland
Log and ln are different. A = -(int(1/t, t = 1 .. t))/(2*bi) and -(int(1/t, t = 1 .. t))/(2*bi) = log[10](t)/(2*bi) and log[10](t)/(2*bi) = log[10]((b*i+z)/(b*i-z))/(2*bi)

So log written in the formula must read as ln then.
Your answer is almost correct , its only the I (imaginairy unit) is still there

In a another example of calculating a complex integral is used to remove the I   ....see hereunder

J:= Int(exp(t*x), x);
J1:= subs((SUB:= t= alpha+beta*I), J);
J2:= evalc([Re,Im](J1));

@Carl Love 

Thanks

There will be a reason why maple uses  log and ln for the same thing ..yes use in English math books ? 
In written math books here in Holland there is a distinction between the two: log and ln and they differ in meaning
Probably not in English math books : log and ln are the same then.

@Carl Love 

Thanks

I noticed the difference between input and output coloring, so its a mistake 
This second code piece construct the two wanted integrals from 

 J := Int(exp(t*x), x)

Amazing second code piece ,but it needs some clarifcation compared with the first code piece. 

@Carl Love 

I used 2d input expression palette and was writing , so it is not executable math then.
Was not further thinking on it , but it is possible to use the log and  ln for the same logaritme with  base e  : 

log[10](100);    can be used also in worksheet .
                             2
The book example use log as notation ( i assume with base 10 ) 

A  2 d input example                         

log[10](100);    
               2
ln(100.0);

             4.605170186
 

@janhardo 

Complex integration is somewhere started and ...

-------------------------------------------------------------------------------------------------info------------------------

So far, we’ve seen how to evaluate integrals of simple functions of a complex variable—that were defi ned in terms of a single real parameter we called t. Now it’s time to generalize and consider a more general case, where we just say we’re integrating a function of a complex variable f (z ), where ∈ C. This can be done using a technique called contour integration. The reason integrals of complex functions are done the way they are is that while an integral of a real-valued function is defi ned on an interval of the line, an integral  of a complex-valued function is defi ned on a curve in the complex plane.

First 41 42 43 44 45 46 47 Last Page 43 of 73