vv

11843 Reputation

19 Badges

7 years, 185 days

MaplePrimes Activity


These are replies submitted by vv

@nm It is exactly maths which does not agree with your opinion. See e.g. Richardson's theorem - Wikipedia

@Carl Love Should be:

IsRowPerm:= (A::Matrix, B::Matrix)-> #Is A a row permutation of B?
    evalb(`=`((sort@convert)~([A,B], 'listlist')[])):

to avoid 
IsRowPerm( <1;2;2;1>, <1;1;1;2> )  = true

@nm Yes, simplification is sometimes "art and craft":

r := sqrt(-x + 1/2 - sqrt(-4*x + 1)/2) + 1/2 - sqrt(-4*x + 1)/2:
xx := solve(sqrt(-4*x + 1)=t, x):
simplify(eval(r,x=xx)) assuming t>1;  # 0
simplify(eval(r,x=xx)) assuming t>0;  # ((signum(-1+t) - 1)*(-1+t))/2

 

@rlopez Of course, but for the function defined implicitely by w=0, x = c is a (vertical) asymptote.

@Carl Love The fact that

sys:=[a*x1^3 + b*x1^2 + c*x1 + d, a*x2^3 + b*x2^2 + c*x2 + d, a*x3^3 + b*x3^2 + c*x3 + d, x1*x2*x3 = -d/a, x1 + x2 + x3 = -b/a, x1*x2 + x1*x3 + x2*x3 = c/a]:
solve(sys, {x1, x2, x3}, explicit);

does not work, is a weakness of solve.
It is easy to see (but not for a CAS) that sys is equivalent to sys[4..6], which works!

@Carl Love 

g := (x, T) -> T*x + x^2:  #just an example
dgdx1:=(x,T) -> D[1](g)(x,T);
dgdx2:=  D[1](g);
dgdx1(1, 2);  # 4
dgdx2(1, 2);  # 4

g := (x, T) -> T*x + 7*x^2:
dgdx1(1, 2); # 16
dgdx2(1, 2); # 4

For a fixed g, dgdx2 is of course more efficient, but I don't think this matters here.

Your odetest examples are not correctly treated. You cannot use asympt when the series solution is around a finite point (e.g. 'point'=0). asympt does a series expansion around infinity!
Note also that not all ode solutions have series expansions; e.g. for Ex 6, the series can be obtained only with MultiSeries:-series,
so, for x>0 (series and dsolve cannot do it).

@acer  Of course, but that is what the user has asked.

@Axel Vogt Your last command should be:
MultiSeries:-asympt(%, x, 6);
or simply,
asympt(%, x, 6);

Actualy, odetest(sol, ode)  does essentially the same thing.


 

@nm All your "positive" examples are regular series or Puiseux series.
The solution of the ode in the question is not of these types, and I suspect that odetest rejects it.
But the asympt approach is acceptable in my opinion and works.

@smithss  This one cannot have a solution: there are more columns than colors!

@Carl Love Actually the max number of permutations used is small:

(9!/(3!*2!*2!)) * 6 = 90720

because once a permution if found for a column, it is kept.
The puzzle can be easily solved by hand.

It would be interesting to find a puzzle which cannot be solved this way!

@C_R It would not be a good idea to simply return infinity, because the arithmetic with oo is complicated.
This is why there is try ... end try.  See also ?events
Example

try
  EllipticK(1)
  catch "numeric exception: div":
  infinity;
end try;

      infinity

@jud What I get is:

2 3 4 5 6 7 8 Last Page 4 of 162