Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Ladies and Gentlemen,

first question :

what is the equivalent command in Maple to display Mathematica :

$MaxMachineNumber/$MinMachineNumber and $MaxNumber/$MinNumber ?

second question :

How do you "call" the result of a command using ((5)) for example.

I don't know if my English is so bad as to understand the question

A solution would be a great relief for me.

Thank you very much and kind regards,

Jean-Michel

Syntax for merging and overlaying all three graphs on a single plot.
Include three sets of iso-profit lines on the same axes:
– Case 1: thin solid lines
– case 2: brown dashed lines
– Case 3: grey semi-dashed lines
Also add vector arrows to show the direction of maximum profit increase.
Combined plot = Plot 1 + Plot 2 +  Plot 3
Attaching sheet:
case_1.mw                  case_2.mw                 Case_3.mw
 

sample graph: 

Is it possible to install and operate Maple toolbox 2025.2 with MATLAB R2025b on Linux (Ubuntu 24.04)  platform?

On Ubuntu 24.04 installation process hangs after location of Maple and Matlab folders at installer window.

Any idea what is wrong?

Of course, I know that actual Maple 2025 system requirements mention support only for MATLAB R2024b, but this is an obsolete version of MATLAB.

And finally, Is there any reliable and effective way how to switch between Maple and MATLAB symbolic engine?

My maple version is 2025.2 and is extremely slow when typing. If i type fast then half a second goes by and the text appears. My pc has quite decent specs so limited performance is likely not the issue.

When I use Maple to solve some complex polynomial system and trying different methods, for instance, using engine = traditional, it will sometimes lose or fail to find the solutions. In the document, it says Maple will convert to engine = groebner when it does not find solutions using traditional engine. As far as I know it is using resultant to eliminate variables, and the resultant is computed by pseudo remainder. The leading coefficient of the divisor is multiplied during each division to ensure that we include the case that it is zero.

But why this procedure will lose solutions sometimes? What makes Maple abandon this method?

I this code, I do by my hand (x - ptA[1])^2 + (y - ptA[2])^2 + (z - ptA[3])^2 = r^2;

restart;
with(geom3d);
ptA := coordinates(point(A, 1, -4, 3));
point(B, -3, 2, 5);
r := distance(A, B);
Equation(sphere(S, [A, r], [x, y, z]));
(x - ptA[1])^2 + (y - ptA[2])^2 + (z - ptA[3])^2 = r^2;

When I used Equation(sphere(S, [A, r], [x, y, z])); I got


Is there a function to convert Equation(sphere(S, [A, r], [x, y, z])); to get the result

Good day to you all ..

I built a routine to solve a machine-job allocation problem. This involves binary decision variables and an objective function to minimize the maximum completion time (makespan).The model assumes that each job, n, has a sequence of operations that must be processed in a specific order on a specific machine, m.

Consider (for example) the case of 5 machines and 3 jobs. Every job, 1, 2, and 3, visits machines 1 to 5 in order, with the processing times specified by the matrix, P. Maple successfully returns the required solutions for various combinations up to this scale.

However, when I encounter the 8-machine, 5-job problem, Maple stops (after 30 minutes of processing time) and returns the following error:

"Maximal depth, 182, of branch and bound search is too small; use depthlimit option to increase depth."

I have attempted to modify the depth limit (to a value exceeding 182) but without success ... I cannot resolve this problem. Can somebody advise on how to fix this - if possible? The worksheet in question is attached.

Thanks for reading.

MaplePrimes_Nov_16.mw

It hangs are v(x) := for some reason.

NULL;

q := x -> v1*Dirac(x - a1) + v2*Dirac(x - a2) + v3*Dirac(x - a3);
NULL;

V := x -> -int(q(x), x = 0 .. x) + Ra + Rb*Dirac(x - L);
proc (x) options operator, arrow, function_assign; Units:-Simple\

  :-`+`(Units:-Simple:-`+`(Units:-Simple:-`-`(MTM:-int(q(x), x 

   = 0 .. x)), Ra), Units:-Simple:-`*`(Rb, Dirac(Units:-Simple:-\

  `+`(x, `-`(L))))) end proc


NULL;

M := x -> int(V(x), x = 0 .. x) + Ma + Mb*Dirac(x - L);
proc (x) options operator, arrow, function_assign; Units:-Simple\

  :-`+`(Units:-Simple:-`+`(MTM:-int(V(x), x = 0 .. x), Ma), 

   Units:-Simple:-`*`(Mb, Dirac(Units:-Simple:-`+`(x, 

   `-`(L))))) end proc

theta := x -> 1000000000000*(int(M(x), x = 0 .. x) + `θa` + `θb`*Dirac(x - L))/(E*S_mm);
proc (x) options operator, arrow, function_assign; Units:-Simple\

  :-`*`(Units:-Simple:-`+`(Units:-Simple:-`+`(MTM:-int(M(x), x 

   = 0 .. x), `θa`), Units:-Simple:-`*`(`θb`, 

   Dirac(Units:-Simple:-`+`(x, `-`(L))))), 1/(E*S_mm*10^(-12))) 

   end proc

v := x -> int(theta(x), x = 0 .. x);
proc (x) options operator, arrow, function_assign; MTM:-int(thet\

  a(x), x = 0 .. x) end proc

Having started learning Maple about a year ago as a beginner, and now having mastered my preferred area of ​​"ordinary differential equations" fairly independently, I'd like to explore "elliptic curves" in Maple. For practice, I've chosen two problems, for each of which I only know one solution:

y^2 = x^3  -51*x^2 + 867*x - 4792    (17;11)

y^2 - 2*y + 14 = 2*x^3 + 11*x^2 - 29*x - 17    (3;7)

My attempts using commands like "algcurves", "ThueSolve", and "parametrization" have failed. How does one approach such problems in Maple? I'm also particularly interested in the group-theoretically based graphical secant method.

(I'm familiar with the book by Silverman/Tate.)

i am waiting  about 5-10 min to get result but if my equation not satisfy the solutions i have to  remove this model and find another one so  how i can handle this?

p-test.mw

I get this message:

Why is it not working using the menu?

When I use latex(expression) to convert my expression to latex, the latex output is missing a large portion of my expression. See attached maplesheet. I want latex( ) to output the complete expression. What is happening

incomplete_latex_output.mw

restart;
with(plots): Digits:= trunc(evalhf(Digits)); #generally a very efficient setting

# Here we solve a 1D problem in 3 regions. In each region, we have concentration and potential (c,phi) distributions,
# We first solve the unperturbed steady-state problem and then the linearized perturbation problem (which rely on the steady state).
# Each region is defined in x = 0..1, and the regions are connected by interface conditions that connect (c1(1),phi1(1)) to (c2(0),phi2(0))  and (c2(1),phi2(1)) to (c3(0),phi3(0))

Q:=10;   omega:=100;     J0:= 1.95;   # parameters

# The unperturbed steady-state

c1:=1-J0/2*x:               c3:=1-J0/2*(x-1):                   # concentration distributions in region 1 and 3    
c12:= eval(c1,x=1):        c32 := eval(c3,x=0):  
T1:=sqrt(Q^2+4*c12^2):     T3:=sqrt(Q^2+4*c32^2):           # the values of concentrations 1 and 3 at the interfaces with region 2
c21:=(T1-Q)/2:             c23:=(T3-Q)/2:                     # the values of concentration 2 at the interfaces with region 1 and 3 
I0:=fsolve(Q*i0/2/J0*ln((J0*T1-Q*i0)/(J0*T3-Q*i0))=(J0-T1+T3)/2,i0);   # the electrical current 
V:=(I0/J0+1)*ln(c32/c12)+ln((c21+Q)/(c23+Q))+(J0+2*c23-2*c21)/Q;     # the potential drop across the system 
c2:=solve(y-c21+Q*I0/2/J0*ln((Q*I0-Q*J0-2*J0*y)/(Q*I0-Q*J0-2*J0*c21))=-J0/2*x,y):  # concentration distribution in region 2 
phi1:=I0/J0*ln(c1)+V:   phi3:=I0/J0*ln(c3):                         # potential distribution in regions 1 and 3    
phi21:=I0/J0*ln(c12)+V-0.5*ln((c21+Q)/c21):    
phi2:=(2*c21-2*c2+Q*phi21-J0*x)/Q:      # potential distribution in region 2    

# The linearized problem 
# Unknowns: C11,C12,Phi11,Phi12,C21,C22,Phi21,Phi22,C31,C32,Phi31,Phi32,sigma1,sigma2 (sigma1 and sigma2 are constants along x)

#   Equations

# Region 1 Equations 

eq11 := omega*C11(x)-diff(diff(C12(x), x), x) = 0:                            
eqA1 := 2*c1*diff(Phi11(x), x)+2*(diff(phi1, x))*C11(x) = -sigma1: 
eq12 := omega*C12(x)+diff(diff(C11(x), x), x) = 0:                          
eqA2 := 2*c1*diff(Phi12(x), x)+2*(diff(phi1, x))*C12(x)=-sigma2:

 # Region 2 Equations 

eq21 := omega*C21(x)-diff(diff(C22(x), x)+Q/2*diff(Phi22(x), x), x)=0:      
eqB1 := 2*(c2+Q)*diff(Phi21(x), x)+2*(diff(phi2, x))*C21(x)=-sigma1:
eq22 :=  omega*C22(x)+diff(diff(C21(x), x)+Q/2*diff(Phi21(x), x), x) = 0:  
eqB2 := 2*(c2+Q)*diff(Phi22(x), x)+2*(diff(phi2, x))*C22(x)=-sigma2:

# Region 3 Equations 

eq31 := omega*C31(x)-diff(diff(C32(x), x), x)=0:                            
eqC1 := 2*c3*diff(Phi31(x), x)+2*(diff(phi3, x))*C31(x)=-sigma1:
eq32 := omega*C32(x)+diff(diff(C31(x), x), x) = 0:   
eqC2 := 2*c3*diff(Phi32(x), x)+2*(diff(phi3, x))*C32(x)=-sigma2:

EqSys := eq11, eq12, eq21, eq22, eq31, eq32, eqA1, eqA2, eqB1, eqB2, eqC1, eqC2;    # Equations system 

# Boundary conditions 

# Bcs at the outer ends of regions 1 and 3
Bc1 := C11(0) = 0, C12(0) = 0,  C31(1) = 0, C32(1) = 0, Phi11(0)=1, Phi12(0)=0, Phi31(1)=0, Phi32(1)=0:

# ECP continuity at the two interfaces (between region 1 and 2 and between 2 and 3) 
Intf1 := Phi21(0)-Phi11(1)=C11(1)/(eval(c1, x = 1))-C21(0)/(eval(c2, x = 0)+Q),
Phi22(0)-Phi12(1)=C12(1)/(eval(c1, x = 1))-C22(0)/(eval(c2, x = 0)+Q),
Phi21(0)-Phi11(1)=C21(0)/(eval(c2, x = 0))-C11(1)/(eval(c1, x = 1)),
Phi22(0)-Phi12(1)=C22(0)/(eval(c2, x = 0))-C12(1)/(eval(c1, x = 1)),
Phi21(1)-Phi31(0)=C31(0)/(eval(c3, x = 0))-C21(1)/(eval(c2, x = 1)+Q),
Phi22(1)-Phi32(0)=C32(0)/(eval(c3, x = 0))-C22(1)/(eval(c2, x = 1)+Q),
Phi21(1)-Phi31(0)=C21(1)/(eval(c2, x = 1))-C31(0)/(eval(c3, x = 0)),
Phi22(1)-Phi32(0)=C22(1)/(eval(c2, x = 1))-C32(0)/(eval(c3, x = 0)):

# Fluxes  continuity at the two interfaces (between region 1 and 2 and between 2 and 3)
Intf2 := (Q*sigma1+2*Q*D(phi2)(0)*C21(0))/(2*eval(c2, x = 0)+Q) = 2*D(C21)(0)-2*D(C11)(1),
(Q*sigma2+2*Q*D(phi2)(0)*C22(0))/(2*eval(c2, x = 0)+Q) = 2*D(C22)(0)-2*D(C12)(1),
(Q*sigma1+2*Q*D(phi2)(1)*C21(1))/(2*eval(c2, x = 1)+Q) = 2*D(C21)(1)-2*D(C31)(0),
(Q*sigma2+2*Q*D(phi2)(1)*C22(1))/(2*eval(c2, x = 1)+Q) = 2*D(C22)(1)-2*D(C32)(0): 

Bc := Bc1,Intf1,Intf2;

sys := {EqSys,Bc}:

sol1 := dsolve(sys, numeric, method=bvp[midrich],output = procedurelist);
Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system
Sigma1 := subs(sol1, sigma1);
Sigma2 := subs(sol1, sigma2);
Cond := Sigma1(0)+I*Sigma2(0);
ZR := Re(1/Cond);
ZI := Im(1/Cond);
X:=ZR,-ZI;

I am trying to plot a contour graph for my problem for (psi) function in the particular boundary, and even though it's working, but the contour  plot is not appearing at the end. Could anyone help me with the code to get proper graph in the specified boundary. 

i have ploted the graph in python i got a plot similar to that i am trying maple but i am not able to plot it. could any one help me to solve.

contour_plots_error_in_wavey_flow.mw

In the current graph, the three curves appear close together and are hard to distinguish because of a scaling issue. How can we adjust the scale so that each line is clearly visible and separate?

restart

L1 := ((3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)-.35)*(3.000000000-(3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48))+(.9*(.5+(.6250000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)))*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))+.1408958333+(0.2430555555e-1*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)+0.207886905e-1)*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(3.000000000-(3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48))^2-(.1583333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000))/(3.6288*rho0^2+.48)+(.6200396825*(-.339960-(.5000000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)))*(0.163690476e-1-(.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1))/(1.8144*rho0^2+.24)); L2 := ((3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48))+(.9*(.47+(.6250000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)))*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))+.1345516666+(0.2430555555e-1*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)+0.359077381e-1)*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48))^2-(.1583333333*(3.14725824*rho0^2-.10491*rho0+.284952))/(3.6288*rho0^2+.48)+(.6200396825*(-.364344-(.5000000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)))*(0.282738095e-1-(.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1))/(1.8144*rho0^2+.24)); L3 := ((3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48))+(.9*(.47+(.6250000000*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)))*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))+.1344738889+(0.2430555555e-1*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)+(-(.3149801588*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24)+0.369156746e-1)*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-(3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48))^2+(-.1949156746-(.3100198412*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))*(0.290674603e-1-(.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1))/(1.8144*rho0^2+.24))-(.1583333333*(3.14725824*rho0^2-.105342*rho0+.284952))/(3.6288*rho0^2+.48)

((3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)-.35)*(3.000000000-3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48))+.9*(.5+.6250000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))+.1408958333+0.2430555555e-1*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24)+0.207886905e-1)*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(3.000000000-3.333333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48))^2-.1583333333*(3.26592*rho0^2-0.9411e-1*rho0+.3000)/(3.6288*rho0^2+.48)+.6200396825*(-.339960-.5000000000*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))*(0.163690476e-1-.2480158730*(-.5126688*rho0^2-.887040*rho0+0.1584e-1)/(1.8144*rho0^2+.24))

 

((3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48))+.9*(.47+.6250000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))+.1345516666+0.2430555555e-1*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24)+0.359077381e-1)*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-3.333333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48))^2-.1583333333*(3.14725824*rho0^2-.10491*rho0+.284952)/(3.6288*rho0^2+.48)+.6200396825*(-.364344-.5000000000*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))*(0.282738095e-1-.2480158730*(-.4981536*rho0^2-.88268544*rho0+0.2736e-1)/(1.8144*rho0^2+.24))

 

((3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)-.32)*(2.891000000-3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48))+.9*(.47+.6250000000*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))+.1344738889+0.2430555555e-1*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24)+(-.3149801588*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24)+0.369156746e-1)*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))-0.1000000000e-1*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))^2+(1/2)*(2.891000000-3.333333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48))^2+(-.1949156746-.3100198412*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))*(0.290674603e-1-.2480158730*(-.49525056*rho0^2-.88268544*rho0+0.28128e-1)/(1.8144*rho0^2+.24))-.1583333333*(3.14725824*rho0^2-.105342*rho0+.284952)/(3.6288*rho0^2+.48)

(1)

G2 := plot([L1, L2, L3], rho0 = 0 .. .8, color = ["#00FF00", "#00BC00", "#008000"], labels = [typeset(Typesetting:-mo("ρ", mathvariant = "bold"), "\n"), typeset("\n", Typesetting:-mo("Retailer profit", mathvariant = "bold", mathcolor = "black"))], labeldirections = ["horizontal", "vertical"], legend = [`#msubsup(mi("Pi"),mi("r"),mn("W"));`, `#msubsup(mi("Pi"),mi("r"),mn("D"));`, `#msubsup(mi("Pi"),mi("r"),mn("S"));`], axis[2] = [color = "#006000"])

 
 

``

Download Q_SEPERATE.mw

1 2 3 4 5 6 7 Last Page 2 of 2231