Andiguys

100 Reputation

5 Badges

1 years, 251 days

MaplePrimes Activity


These are replies submitted by Andiguys

@sand15 Is it possible to identify common terms across multiple equations? For example, if
X₁ = some terms + (y − a),
X₂ = (y − a)/some terms
X₃ = (y − a)*some terms
then (y − a) is a shared component. Is there a method to extract such common terms from a set of equations?

@nm How to find common terms between equations? like between Pn_W , w_W etc..

@dharr If  Cr*b<1 then the above condition holds? provided delta<1, alpha and beta >=0

@dharr Are you sure it is −β/α, or is it simply β/α?
I am reframing my question and providing the data again.
I want the analytical condition on t such that B≥A , and numerically t should be positive and greater than zero. Could you please look into this?

Q_t_Condition.mw

@dharr Thank you for your suggestion. However, this still results in a very large equation, as the B and C terms are quite extensive. Is there an alternative way to proceed so that LHS−RHS>0 can be simplified and the condition on t can be obtained?

@sand15 Got it. Thankyou

@sand15 Thankyou

Attaching sheet:

restart

with(Optimization); with(plots); with(Student[VectorCalculus]); with(LinearAlgebra)

NULL

_local(Pi)

Pi

(1)
 

M_w := b*(((Cr*alpha*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+((g*i2-a)*Cr-2*Crm-2*c+2*Pr)*alpha-(-g*i2+a)*Cr)*d+alpha*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+2*g*i2-2*a)*rho0+(2*((Cr*b-1)*d+b))*(delta+Cn-Pr-1))^2*d/(8*(Cr*b*d+b-d)^2*(((Cr*alpha*b-alpha+1)*d+alpha*b)*rho0^2-2*b*d*(delta-1)))

(1/8)*b*(((Cr*alpha*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+((g*i2-a)*Cr-2*Crm-2*c+2*Pr)*alpha-(-g*i2+a)*Cr)*d+alpha*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr)*b+2*g*i2-2*a)*rho0+(2*(Cr*b-1)*d+2*b)*(delta+Cn-Pr-1))^2*d/((Cr*b*d+b-d)^2*(((Cr*alpha*b-alpha+1)*d+alpha*b)*rho0^2-2*b*d*(delta-1)))

(2)
 

M_D := (Cr*rho0*t*(Cr*alpha*b-alpha-1)*d^2+((alpha*((-g*i2+a)*Cr+2*Crm+2*c+3*t-2*Pr)*Cr*b+((g*i2-a)*Cr-2*Crm-2*c-2*t+2*Pr)*alpha+(g*i2-a)*Cr-2*t)*rho0+(2*(Cr*b-1))*(sigma*t+Cn-Pr+delta-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c+2*t-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(sigma*t+Cn-Pr+delta-1))^2*d*b/((8*(((Cr*alpha*b-alpha+1)*rho0^2-2*b*(delta-1))*d+rho0^2*b*alpha))*((Cr*b-1)*d+b)^2)

(Cr*rho0*t*(Cr*alpha*b-alpha-1)*d^2+((alpha*((-g*i2+a)*Cr+2*Crm+2*c+3*t-2*Pr)*Cr*b+((g*i2-a)*Cr-2*Crm-2*c-2*t+2*Pr)*alpha+(g*i2-a)*Cr-2*t)*rho0+(2*Cr*b-2)*(sigma*t+Cn-Pr+delta-1))*d+(alpha*((-g*i2+a)*Cr+2*Crm+2*c+2*t-2*Pr)*b+2*g*i2-2*a)*rho0+2*b*(sigma*t+Cn-Pr+delta-1))^2*d*b/((8*((Cr*alpha*b-alpha+1)*rho0^2-2*b*(delta-1))*d+8*rho0^2*b*alpha)*((Cr*b-1)*d+b)^2)

(3)

 

((t*Cr*(Cr*alpha*b-alpha-1)*d^2+(Cr*((-g*i2+a)*Cr+2*Crm+2*c-2*Pr-2*s+3*t)*alpha*b+((g*i2-a)*Cr-2*Crm-2*c+2*Pr+2*s-2*t)*alpha+(g*i2-a)*Cr-2*t)*d+((-g*i2+a)*Cr+2*Crm+2*c-2*Pr-2*s+2*t)*alpha*b+2*g*i2-2*a)*rho0-(-2*sigma*t-2*Cn+2*Pr-2*delta+2)*((Cr*b-1)*d+b))^2*b*d/((8*((Cr*alpha*b-alpha+1)*d+alpha*b)*rho0^2-16*b*d*(delta-1))*(Cr*b*d+b-d)^2)

(4)
 

DATA1 := [delta = .9, a = 0.1e-1, g = .25, c = 0.5e-1, rho0 = .4, Cn = .4, Crm = .1, i2 = 0.6e-1, t = 0.1e-1, alpha = .95, s = 0.1e-1, Pr = .35, upsilon = .95, b = .5, sigma = 0.1e-1, Cr = 0.1e-1, sigma = 0.1e-1]

[delta = .9, a = 0.1e-1, g = .25, c = 0.5e-1, rho0 = .4, Cn = .4, Crm = .1, i2 = 0.6e-1, t = 0.1e-1, alpha = .95, s = 0.1e-1, Pr = .35, upsilon = .95, b = .5, sigma = 0.1e-1, Cr = 0.1e-1, sigma = 0.1e-1]

(5)

P11 := subs(DATA1, M_w); P21 := subs(DATA1, M_D); P31 := subs(DATA1, M_S)

0.6250000000e-1*(.2507789050*d-.1220095000)^2*d/((-.995*d+.5)^2*(.1087600*d+0.7600e-1))

 

.5*(-0.778100e-4*d^2+.2350369050*d-.1181095000)^2*d/((.8700800*d+.60800)*(-.995*d+.5)^2)

 

.5*(-0.778100e-4*d^2+.2425989050*d-.1219095000)^2*d/((.8700800*d+.60800)*(-.995*d+.5)^2)

(6)

NULL

A1 := plot([P11, P21], d = 0 .. .4, color = ["Red", "Blue"], labels = [sigma, `&pi;__m`], labeldirections = ["horizontal", "vertical"], legend = [`#msubsup(mi("&pi;"),mi("n"),mn("W"));`, `#msubsup(mi("&pi;"),mi("n"),mn("D"));`], axis[2] = [color = "#600000"])

 

NULL

X_11_21 := eval(d, solve({d > 0, P11 = P21, d < .4}))

.2474422485

(7)

interface(displayprecision = 4); hx := 0.5e-1; hy := 0.1e-2; display(A1, pointplot([[X_11_21, P11]], symbol = circle, symbolsize = 25, color = "Blue"), textplot([X_11_21-hx, P11-hy, evalf[7](`<,>`(X_11_21, P11))], color = "Black", align = {below, left}), plot([[X_11_21, P11], [X_11_21-hx, P11-hy]], color = "Black"))

Error, (in plots:-pointplot) points cannot be converted to floating-point values

 

Download Manf_profit__t_graph_changes_needed.mw

@sand15 If we save this plot lets say by 

save(p1,"P1");

On a new page, I want to display this saved plot by reading it from the saved file. Since both the save directory and the new page directory are the same, what syntax should I use?

@acer For x-axis ,  i subscript 2? what to change?

@Rouben Rostamian  I tried saving my plots using the save(p1, "p1"); command, but when I open a new worksheet and try to load them by read("p1"); command , Maple shows the error ‘unable to read p1’. Do I need to set the working directory before saving? Where exactly should I save the file, and what is the correct method to load and display the saved plot? Please guide me.

@sand15 Thankyou

@sand15 I'm encountering a scaling issue with the manufacturer axis after using your syntax. Could you please help me fix it?

Download Scalling_issue.mw

@sand15 Thankyou.

@sand15 TM1, TM2, and TM3 represent the profit outcomes under three different scenarios.
Each region shows which scenario gives the highest profit for the given values of Pn​ and w. So the plot is dividing the (Pn,w) space into areas where each scenario is profit-optimal.

@sand15 The solve command isn’t working. What might be causing the issue?

My_interpretation_M.mw

1 2 3 4 5 6 7 Last Page 1 of 11