Kitonum

21440 Reputation

26 Badges

17 years, 36 days

MaplePrimes Activity


These are answers submitted by Kitonum

We must specify the option  scene , for example  scene=[t, S(t)]  or  scene=[S(t), V(t)]  and etc. But if we do this, then the error appears about the existence of a singularity. In fact, since you have zero initial conditions, then we have zeros in the denominators of your system at  t = 0 

DEplot(sys, [S(t), V(t), C(t), I(t), R(t)], t = 0 .. 50, S = 0 .. 2, V = 0 .. 2, C = 0 .. 2, I = 0 .. 2, R = 0 .. 2, [[S(0) = 0, V(0) = 0, C(0) = 0, I(0) = 0, R(0) = 0]], stepsize = .1, linecolour = blue, thickness = 4, arrows = slim, scene = [t, S(t)]);
    Warning, plot may be incomplete, the following errors(s) were issued:
   cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly    set up

 

PS. You need to think about how correct your model is.

First, you specify the vectors  x  and  y , and then calculate the expressions  px  and  py , using for summation  add  command:

x:=<0, 1, 3>: y:=<2, 3, 4>: n:=3:
px:=x[1]+add((x[j]-x[1])^2, j=2..n)/add(x[j]-x[1], j=2..n);
py:=y[1]+add((x[j]-x[1])*(y[j]-y[1]), j=2..n)/add(x[j]-x[1], j=2..n);

                                                                         

restart;
PDEtools[declare]((f, g)(x), prime = x);
de1 := diff(f(x), x, x, x, x)-(H*H)*(diff(f(x), x, x))-R*(diff(f(x), x, x))*(diff(f(x), x))+R*(diff(f(x), x, x, x))*f(x);
de2 := diff(g(x), x, x)-(H*H)*g(x)-R*(diff(f(x), x))*g(x)+R*(diff(g(x), x))*f(x); 
dd1 := {de1 = 0, de2 = 0, f(0) = 0, f(1) = 1, g(0) = 1, g(1) = 1, (D(f))(0) = 0, (D(f))(1) = 0};
r1 := dsolve(eval(dd1, [R = 1, H = 1]),numeric, output = Array([0., 0.5e-1, .10, .15, .20, .25, .30, .35, .40, .45, .50, .55, .60, .65, .70, .75, .80, .85, .90, .95, 1.00]));
r2 := dsolve(eval(dd1, [R = 5, H = 5]),numeric, output = Array([0., 0.5e-1, .10, .15, .20, .25, .30, .35, .40, .45, .50, .55, .60, .65, .70, .75, .80, .85, .90, .95, 1.00]));
A:=plots:-odeplot(r1, [x, f(x)], x=0..5, color=red):
B:=plots:-odeplot(r2, [x, f(x)], x=0..5, color=blue):
plots:-display(A, B);

 

I had a similar problem with the Maple 2017 a few months ago. Try the following method. After the loading screen appears, open the task manager, then details, then find the processes   jogamp_exe...  and stop them (there are two such processes in my comp).

Formal parameters of the procedure: T  is the list of vertices of the original triangle, n  is the number of steps, C  is the color (optional, by default red).

Sierpinski:=proc(T::list,n::nonnegint,C::symbol:=red)
local Step;
uses plottools, plots;
Step:=L->map(t->op([[t[1],(t[1]+t[2])/2,(t[1]+t[3])/2],[(t[1]+t[2])/2,t[2],(t[2]+t[3])/2],[(t[1]+t[3])/2,(t[2]+t[3])/2,t[3]]]), L);
map(t->polygon(t,style=surface,color=C),(Step@@n)([T]));
display(%, axes=none, size=[600,600]);
end proc:


Example of use (animation):

plots:-display(seq(Sierpinski([[-1,0],[0,sqrt(3)],[1,0]], n)$7, n=0..7), insequence);

Output:

                      


Sierpinski.mw

P:=x*y*z+ x*y^2+x*y-y*z^2;
select(p->degree(p,x)<2 and degree(p,y)<2 and degree(p,z)<2, P);

 

Use  subsop  command:

restart;
f:=(3*beta[11]^2-4*beta[11]*sigma[11]+6*beta[12]^2-12*beta[12]*sigma[12]+2*sigma[11]^2+6*sigma[12]^2)*(1/sqrt(6*beta[11]^2-8*beta[11]*sigma[11]+12*beta[12]^2-24*beta[12]*sigma[12]+4*sigma[11]^2+12*sigma[12]^2))*(1/omega^2);
subsop(2=1/phi, f);

 

Maple knows this multiplication rule, only you have to multiply the entire inequality, not its individual operands:

(2<3)*(-1);
(k/m<=2/n)*(-1);

                                            

PS. Note that Maple always writes a sign of inequality in one direction, if necessary, rearranging the sides of the inequality. You can make Maple change the direction of the inequality only (as you wish), but it's not so simple, you need a special procedure for this.

I divided your code into 2 parts: the first system and the second system. Maple easily solves the first system and builds graphics. But with the second system there are problems. Probably the second system itself is composed incorrectly.


 

restart;
N := 4:
de1 := A*(diff(f(eta), eta, eta, eta))+n*(-(diff(f(eta), eta, eta)))^(n-1)*(diff(f(eta), eta, eta, eta))-S*(diff(f(eta), eta))+(2-n)*eta*(diff(f(eta), eta, eta))/(1+n)+2*n*f(eta)*(diff(f(eta), eta, eta))/(1+n)-(diff(f(eta), eta))^2-g(eta)*(diff(f(eta), eta, eta))+(M*M)*(diff(f(eta), eta)) = 0, A*(diff(g(eta), eta, eta, eta))+(-(diff(f(eta), eta, eta)))^(n-1)*(diff(g(eta), eta, eta, eta))-(n-1)*(diff(g(eta), eta, eta))*(diff(f(eta), eta, eta, eta))*(-(diff(f(eta), eta, eta)))^(n-2)-S*(diff(g(eta), eta))+(2-n)*eta*(diff(g(eta), eta, eta))/(1+n)+2*n*f(eta)*(diff(g(eta), eta, eta))/(1+n)-(diff(g(eta), eta))^2+g(eta)*(diff(g(eta), eta, eta))-(M*M)*(diff(g(eta), eta)) = 0, (1+E*j(eta))*(diff(j(eta), eta, eta))+E*(diff(j(eta), eta))^2+2*Pr*n*f(eta)*g(eta)*(diff(j(eta), eta))/(1+n)-Pr*S*(2-n)*eta*(diff(j(eta), eta))/(1+n)+Pr*(Nb*(diff(j(eta), eta))*(diff(h(eta), eta))+Nt*(diff(j(eta), eta))^2)+Pr*lambda*j(eta) = 0, diff(h(eta), eta, eta)+2*Le*Pr*n*f(eta)*g(eta)*(diff(h(eta), eta))/(1+n)-Le*Pr*S*(2-n)*eta*(diff(h(eta), eta))/(1+n)+Nt*(diff(j(eta), eta, eta))/Nb = 0, f(0) = 0, (D(f))(0) = 1, g(0) = 0, (D(g))(0) = alpha, (D(j))(0) = -b*(1-j(0))/(1+E*j(0)), (D(h))(0) = -d*(1-h(0)), (D(f))(N) = 0, (D(g))(N) = 0, j(N) = 0, h(N) = 0:

 d1 := subs(alpha = .2, M = .4, A = 1, S = .1, n = .5, Pr = 4, E = 1.5, Nb = .5, Nt = .2, Le = 1, lambda = .2, b = 1.2, d = .5, [de1]):
 
da1 := dsolve(d1, numeric, output = operator, maxmesh = 2048, method = bvp[midrich], abserr = 10);
plots:-odeplot(da1,[[eta,f(eta)],[eta,g(eta)],[eta,j(eta)],[eta,h(eta)]], eta=0..4, color=[red,blue,green,gold]);
 

[eta = proc (eta) local _res, _dat, _solnproc; option `Copyright (c) 1993 by the University of Waterloo. All rights reserved.`; _dat := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); _solnproc := _dat[1]; if member(eta, ["last", 'last']) then _res := _solnproc("last"); if type(_res, 'list') then return _res[1] end if elif type(eta, `=`) and member(lhs(eta), ["initial", 'initial']) then if type(rhs(eta), 'list') then _res := _solnproc("initial" = [0, op(rhs(eta))]) else _res := _solnproc("initial" = [1, rhs(eta)]) end if; if type(_res, 'list') then return _res[1] end if elif eta = "sysvars" then return _dat[3] end if; eta end proc, f = proc (eta) local res, data, solnproc, f, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else f := pointto(data[2][2]); return ('f')(eta) end if end if; try res := solnproc(outpoint); res[2] catch: error  end try end proc, D(f) = proc (eta) local res, data, solnproc, `D(f)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `D(f)` := pointto(data[2][3]); return ('`D(f)`')(eta) end if end if; try res := solnproc(outpoint); res[3] catch: error  end try end proc, (D@@2)(f) = proc (eta) local res, data, solnproc, `\`@@\`(D,2)(f)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `\`@@\`(D,2)(f)` := pointto(data[2][4]); return ('`\`@@\`(D,2)(f)`')(eta) end if end if; try res := solnproc(outpoint); res[4] catch: error  end try end proc, g = proc (eta) local res, data, solnproc, g, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else g := pointto(data[2][5]); return ('g')(eta) end if end if; try res := solnproc(outpoint); res[5] catch: error  end try end proc, D(g) = proc (eta) local res, data, solnproc, `D(g)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `D(g)` := pointto(data[2][6]); return ('`D(g)`')(eta) end if end if; try res := solnproc(outpoint); res[6] catch: error  end try end proc, (D@@2)(g) = proc (eta) local res, data, solnproc, `\`@@\`(D,2)(g)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `\`@@\`(D,2)(g)` := pointto(data[2][7]); return ('`\`@@\`(D,2)(g)`')(eta) end if end if; try res := solnproc(outpoint); res[7] catch: error  end try end proc, h = proc (eta) local res, data, solnproc, h, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else h := pointto(data[2][8]); return ('h')(eta) end if end if; try res := solnproc(outpoint); res[8] catch: error  end try end proc, D(h) = proc (eta) local res, data, solnproc, `D(h)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `D(h)` := pointto(data[2][9]); return ('`D(h)`')(eta) end if end if; try res := solnproc(outpoint); res[9] catch: error  end try end proc, j = proc (eta) local res, data, solnproc, j, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else j := pointto(data[2][10]); return ('j')(eta) end if end if; try res := solnproc(outpoint); res[10] catch: error  end try end proc, D(j) = proc (eta) local res, data, solnproc, `D(j)`, outpoint; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](eta) else outpoint := evalf(eta) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = 1.0, (1, 3) = -.8834429567232115, (1, 4) = .0, (1, 5) = .2, (1, 6) = -.17502587375303238, (1, 7) = .7294741950969065, (1, 8) = -.13526290245154673, (1, 9) = -4.288232920418962, (1, 10) = 1.1681645882297311, (2, 1) = .32475184054990863, (2, 2) = .7041474305605983, (2, 3) = -.6690544677137856, (2, 4) = 0.6474808838192828e-1, (2, 5) = .1397680156729281, (2, 6) = -.14104371696810544, (2, 7) = .6807631564206756, (2, 8) = -.12035009502823027, (2, 9) = -3.8515572982391437, (2, 10) = 1.1233070729195598, (3, 1) = .5629582741476946, (3, 2) = .4707891430736588, (3, 3) = -.48196896430661174, (3, 4) = .11144277839783405, (3, 5) = 0.9055027701785333e-1, (3, 6) = -.10171933667410875, (3, 7) = .6345518489833729, (3, 8) = -.10758394690122502, (3, 9) = -3.4055774902885014, (3, 10) = 1.0764571381024106, (4, 1) = .7233700176967449, (4, 2) = .30225871867494924, (4, 3) = -.33020401841002184, (4, 4) = .14175561215561522, (4, 5) = 0.5553174167692134e-1, (4, 6) = -0.670401523005737e-1, (4, 7) = .5919373362490061, (4, 8) = -0.9778167795832798e-1, (4, 9) = -2.9679111861260408, (4, 10) = 1.0327213615923494, (5, 1) = .8263788746831779, (5, 2) = .18732314129411845, (5, 3) = -.2160633162341926, (5, 4) = .16032394420097001, (5, 5) = 0.3272007282952786e-1, (5, 6) = -0.41379449567023614e-1, (5, 7) = .5519603268043154, (5, 8) = -0.9222158207697564e-1, (5, 9) = -2.541576835612125, (5, 10) = .9935661868734874, (6, 1) = .88980300107139, (6, 2) = .11265943671859492, (6, 3) = -.13708006717562646, (6, 4) = .17120856235979653, (6, 5) = 0.18761847409828225e-1, (6, 6) = -0.24639976861565258e-1, (6, 7) = .5129061854960069, (6, 8) = -0.9249616902028895e-1, (6, 9) = -2.128612119301333, (6, 10) = .959668761432002, (7, 1) = .9270788980337967, (7, 2) = 0.6602553968796267e-1, (7, 3) = -0.8646322674076358e-1, (7, 4) = .1773264313917764, (7, 5) = 0.10564644310551033e-1, (7, 6) = -0.14653968066743062e-1, (7, 7) = .4725082276646122, (7, 8) = -.10115465443959537, (7, 9) = -1.733799285377605, (7, 10) = .9328979549588938, (8, 1) = .947907065601756, (8, 2) = 0.3742367546997766e-1, (8, 3) = -0.5559633734475979e-1, (8, 4) = .18062288609261684, (8, 5) = 0.5808166715333271e-2, (8, 6) = -0.8970475732074362e-2, (8, 7) = .4271733296176233, (8, 8) = -.12401443962131636, (8, 9) = -1.3607450968893129, (8, 10) = .9199853044337346, (9, 1) = .9589488697763091, (9, 2) = 0.19507466535141883e-1, (9, 3) = -0.3677898637391164e-1, (9, 4) = .18232371195620906, (9, 5) = 0.29612297741734425e-2, (9, 6) = -0.5708227921293922e-2, (9, 7) = .3688371795735703, (9, 8) = -.17676463503786038, (9, 9) = -.9998759022633149, (9, 10) = .9406431798019211, (10, 1) = .9640978304134371, (10, 2) = 0.788553897810981e-2, (10, 3) = -0.25050875627512653e-1, (10, 4) = .18310184872134377, (10, 5) = 0.11785386567013396e-2, (10, 6) = -0.3775874026818125e-2, (10, 7) = .22214482244011616, (10, 8) = -.6036539447301021, (10, 9) = -.508242417047826, (10, 10) = 1.6748980371763473, (11, 1) = .9655605613898752, (11, 2) = .0, (11, 3) = -0.17459829332541366e-1, (11, 4) = .18332046218643122, (11, 5) = .0, (11, 6) = -0.2577592649096818e-2, (11, 7) = .0, (11, 8) = -.5939221539196585, (11, 9) = .0, (11, 10) = 1.0650216435559685}, datatype = float[8], order = C_order); YP := Matrix(11, 10, {(1, 1) = 1.0, (1, 2) = -.8834429567232115, (1, 3) = .6135921755200355, (1, 4) = .2, (1, 5) = -.17502587375303238, (1, 6) = 0.7590745150347313e-1, (1, 7) = -.13526290245154673, (1, 8) = 0.4476924419091142e-1, (1, 9) = 1.1681645882297311, (1, 10) = -.11192311047727856, (2, 1) = .7041474305605983, (2, 2) = -.6690544677137856, (2, 3) = .5027704853000406, (2, 4) = .1397680156729281, (2, 5) = -.14104371696810544, (2, 6) = 0.9632524685194414e-1, (2, 7) = -.12035009502823027, (2, 8) = 0.3509673430638782e-1, (2, 9) = 1.1233070729195598, (2, 10) = -.11674028151384053, (3, 1) = .4707891430736588, (3, 2) = -.48196896430661174, (3, 3) = .4067467475895228, (3, 4) = 0.9055027701785333e-1, (3, 5) = -.10171933667410875, (3, 6) = 0.9141580608952495e-1, (3, 7) = -.10758394690122502, (3, 8) = 0.27916651771479763e-1, (3, 9) = 1.0764571381024106, (3, 10) = -.10942124232664541, (4, 1) = .30225871867494924, (4, 2) = -.33020401841002184, (4, 3) = .3114436133091095, (4, 4) = 0.5553174167692134e-1, (4, 5) = -0.670401523005737e-1, (4, 6) = 0.7113647692923261e-1, (4, 7) = -0.9778167795832798e-1, (4, 8) = 0.18824713488211735e-1, (4, 9) = 1.0327213615923494, (4, 10) = -0.977136931168981e-1, (5, 1) = .18732314129411845, (5, 2) = -.2160633162341926, (5, 3) = .22103236918353025, (5, 4) = 0.3272007282952786e-1, (5, 5) = -0.41379449567023614e-1, (5, 6) = 0.4813126455057406e-1, (5, 7) = -0.9222158207697564e-1, (5, 8) = 0.6837277524204296e-2, (5, 9) = .9935661868734874, (5, 10) = -0.8526061096872907e-1, (6, 1) = .11265943671859492, (6, 2) = -.13708006717562646, (6, 3) = .1464163299303223, (6, 4) = 0.18761847409828225e-1, (6, 5) = -0.24639976861565258e-1, (6, 6) = 0.29722944380348774e-1, (6, 7) = -0.9249616902028895e-1, (6, 8) = -0.937476203412555e-2, (6, 9) = .959668761432002, (6, 10) = -0.718031456033186e-1, (7, 1) = 0.6602553968796267e-1, (7, 2) = -0.8646322674076358e-1, (7, 3) = 0.931044170594975e-1, (7, 4) = 0.10564644310551033e-1, (7, 5) = -0.14653968066743062e-1, (7, 6) = 0.1759465969063046e-1, (7, 7) = -.10115465443959537, (7, 8) = -0.3429648251199416e-1, (7, 9) = .9328979549588938, (7, 10) = -0.52489821484974594e-1, (8, 1) = 0.3742367546997766e-1, (8, 2) = -0.5559633734475979e-1, (8, 3) = 0.58816668987945145e-1, (8, 4) = 0.5808166715333271e-2, (8, 5) = -0.8970475732074362e-2, (8, 6) = 0.10428952483161431e-1, (8, 7) = -.12401443962131636, (8, 8) = -0.8379769217998895e-1, (8, 9) = .9199853044337346, (8, 10) = -0.42758700379179615e-2, (9, 1) = 0.19507466535141883e-1, (9, 2) = -0.3677898637391164e-1, (9, 3) = 0.3760895118230059e-1, (9, 4) = 0.29612297741734425e-2, (9, 5) = -0.5708227921293922e-2, (9, 6) = 0.6317023330328591e-2, (9, 7) = -.17676463503786038, (9, 8) = -.24138089452749326, (9, 9) = .9406431798019211, (9, 10) = .23445913043646516, (10, 1) = 0.788553897810981e-2, (10, 2) = -0.25050875627512653e-1, (10, 3) = 0.2452787975320816e-1, (10, 4) = 0.11785386567013396e-2, (10, 5) = -0.3775874026818125e-2, (10, 6) = 0.39365161569051e-2, (10, 7) = -.6036539447301021, (10, 8) = 3.4150231693782755, (10, 9) = 1.6748980371763473, (10, 10) = -10.017811138219267, (11, 1) = .0, (11, 2) = -0.17459829332541366e-1, (11, 3) = 0.16278793342263412e-1, (11, 4) = .0, (11, 5) = -0.2577592649096818e-2, (11, 6) = 0.2513536753848447e-2, (11, 7) = -.5939221539196585, (11, 8) = -.6129654394717505, (11, 9) = 1.0650216435559685, (11, 10) = -.14241912598983408}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(11, {(1) = .0, (2) = .3811311565256744, (3) = .7866108035860726, (4) = 1.2016219600394502, (5) = 1.6224253655943097, (6) = 2.045277431260097, (7) = 2.462502177425592, (8) = 2.8651764275136182, (9) = 3.253076750101921, (10) = 3.629009258467033, (11) = 4.0}, datatype = float[8], order = C_order); Y := Matrix(11, 10, {(1, 1) = .0, (1, 2) = .0, (1, 3) = 0.2954311954351141e-2, (1, 4) = .0, (1, 5) = .0, (1, 6) = 0.10375937873730774e-2, (1, 7) = 0.3237399789813189e-2, (1, 8) = 0.16186998949065203e-2, (1, 9) = -0.826231680003057e-2, (1, 10) = -0.838526250623417e-3, (2, 1) = -0.2202771022820367e-2, (2, 2) = 0.1929858706339438e-2, (2, 3) = 0.23874456333169053e-3, (2, 4) = -0.3930794371826603e-3, (2, 5) = 0.7783002414577891e-4, (2, 6) = 0.6580769310506144e-3, (2, 7) = 0.4011804023620631e-2, (2, 8) = 0.18515940331034948e-2, (2, 9) = -0.8456204064452539e-2, (2, 10) = -0.452014155976362e-3, (3, 1) = -0.37694002879032533e-2, (3, 2) = 0.28733156107993243e-2, (3, 3) = -0.1986052040210036e-2, (3, 4) = -0.8517027702748166e-3, (3, 5) = 0.2865029547891399e-3, (3, 6) = 0.4490063237233555e-4, (3, 7) = 0.490019640141955e-2, (3, 8) = 0.20525321616655656e-2, (3, 9) = -0.8663516778373884e-2, (3, 10) = -0.6407160423105296e-4, (4, 1) = -0.4690492437693964e-2, (4, 2) = 0.3111992583480309e-2, (4, 3) = -0.3396528658325293e-2, (4, 4) = -0.11845268224594343e-2, (4, 5) = 0.4800119375187317e-3, (4, 6) = -0.4999513982856991e-3, (4, 7) = 0.5919680629061267e-2, (4, 8) = 0.22426485968441803e-2, (4, 9) = -0.8807221850590352e-2, (4, 10) = 0.17141939892706404e-3, (5, 1) = -0.5104326733890977e-2, (5, 2) = 0.28972535769340815e-2, (5, 3) = -0.39480339451255135e-2, (5, 4) = -0.13437720041615067e-2, (5, 5) = 0.5480051460932851e-3, (5, 6) = -0.7814223254589043e-3, (5, 7) = 0.7094989649255812e-2, (5, 8) = 0.25289962375385127e-2, (5, 9) = -0.8916550301853121e-2, (5, 10) = 0.15213650100805626e-3, (6, 1) = -0.5166025133801414e-2, (6, 2) = 0.23877939265703656e-2, (6, 3) = -0.37494568072648318e-2, (6, 4) = -0.13735480420521418e-2, (6, 5) = 0.4901976098487988e-3, (6, 6) = -0.7943449228857563e-3, (6, 7) = 0.851291774261383e-2, (6, 8) = 0.3091247076090801e-2, (6, 9) = -0.9129755614904884e-2, (6, 10) = -0.2789780478738753e-3, (7, 1) = -0.5044904252213674e-2, (7, 2) = 0.17470137740876097e-2, (7, 3) = -0.30891177885929246e-2, (7, 4) = -0.13411069719252433e-2, (7, 5) = 0.36704606457336336e-3, (7, 6) = -0.6537365644777605e-3, (7, 7) = 0.10404681402511754e-1, (7, 8) = 0.4383450306229275e-2, (7, 9) = -0.9790937021013413e-2, (7, 10) = -0.17406190555342427e-2, (8, 1) = -0.4889658079022011e-2, (8, 2) = 0.11344183900231415e-2, (8, 3) = -0.23181488995968427e-2, (8, 4) = -0.1297734212303614e-2, (8, 5) = 0.2385216202825414e-3, (8, 6) = -0.48066448044943355e-3, (8, 7) = 0.13530431901510745e-1, (8, 8) = 0.8371333332041504e-2, (8, 9) = -0.12139690793481428e-1, (8, 10) = -0.7631675978715021e-2, (9, 1) = -0.478789311150433e-2, (9, 2) = 0.6387533855417061e-3, (9, 3) = -0.16595768142964873e-2, (9, 4) = -0.12677902521774178e-2, (9, 5) = 0.13373781375181543e-3, (9, 6) = -0.3370200548957538e-3, (9, 7) = 0.19587744708562466e-1, (9, 8) = 0.1456444077643156e-1, (9, 9) = -0.18332845062072334e-1, (9, 10) = -0.12781957687277707e-1, (10, 1) = -0.4759849205128544e-2, (10, 2) = 0.2684604232968309e-3, (10, 3) = -0.11661343787000705e-2, (10, 4) = -0.1255791748663674e-2, (10, 5) = 0.5604293612816579e-4, (10, 6) = -0.2332775275373586e-3, (10, 7) = -0.45966460697731915e-1, (10, 8) = .21860972182802155, (10, 9) = .13501562203485476, (10, 10) = -.6772404694488602, (11, 1) = -0.4800130824039664e-2, (11, 2) = .0, (11, 3) = -0.8157332970405208e-3, (11, 4) = -0.12597536555697397e-2, (11, 5) = .0, (11, 6) = -0.1619102470869424e-3, (11, 7) = .0, (11, 8) = 0.3843627310223881e-2, (11, 9) = .0, (11, 10) = -0.2350361729414659e-1}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [10, 11, [f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(10, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(10, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(11, 10, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)]'[i] = yout[i], i = 1 .. 10)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[11] elif outpoint = "order" then return 2 elif outpoint = "error" then return HFloat(0.6772404694488602) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [10, 11, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[11] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[11] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(10, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(10, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0., (6) = 0., (7) = 0., (8) = 0., (9) = 0., (10) = 0.}); `dsolve/numeric/hermite`(11, 10, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 10)] end proc, (2) = Array(1..11, {(1) = 18446746387373214462, (2) = 18446746387373214902, (3) = 18446746387373215166, (4) = 18446746387373215342, (5) = 18446746387373215518, (6) = 18446746387373207550, (7) = 18446746387373207726, (8) = 18446746387373207902, (9) = 18446746387373208078, (10) = 18446746387373208254, (11) = 18446746387373208518}), (3) = [eta, f(eta), diff(f(eta), eta), diff(diff(f(eta), eta), eta), g(eta), diff(g(eta), eta), diff(diff(g(eta), eta), eta), h(eta), diff(h(eta), eta), j(eta), diff(j(eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(eta) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(eta) else `D(j)` := pointto(data[2][11]); return ('`D(j)`')(eta) end if end if; try res := solnproc(outpoint); res[11] catch: error  end try end proc]

 

 

restart;
with(plots):
N := 4:
de2 := A*(diff(f(eta), eta, eta, eta))+n*(-(diff(f(eta), eta, eta)))^(n-1)*(diff(f(eta), eta, eta, eta))-S*(diff(f(eta), eta))+(2-n)*eta*(diff(f(eta), eta, eta))/(1+n)+2*n*f(eta)*(diff(f(eta), eta, eta))/(1+n)-(diff(f(eta), eta))^2-g(eta)*(diff(f(eta), eta, eta))+(M*M)*(diff(f(eta), eta)) = 0, A*(diff(g(eta), eta, eta, eta))+(-(diff(f(eta), eta, eta)))^(n-1)*(diff(g(eta), eta, eta, eta))-(n-1)*(diff(g(eta), eta, eta))*(diff(f(eta), eta, eta, eta))*(-(diff(f(eta), eta, eta)))^(n-2)-S*(diff(g(eta), eta))+(2-n)*eta*(diff(g(eta), eta, eta))/(1+n)+2*n*f(eta)*(diff(g(eta), eta, eta))/(1+n)-(diff(g(eta), eta))^2+g(eta)*(diff(g(eta), eta, eta))-(M*M)*(diff(g(eta), eta)) = 0, (1+E*j(eta))*(diff(j(eta), eta, eta))+E*(diff(j(eta), eta))^2+2*Pr*n*f(eta)*g(eta)*(diff(j(eta), eta))/(1+n)-Pr*S*(2-n)*eta*(diff(j(eta), eta))/(1+n)+Pr*(Nb*(diff(j(eta), eta))*(diff(h(eta), eta))+Nt*(diff(j(eta), eta))^2)+Pr*lambda*j(eta) = 0, diff(h(eta), eta, eta)+2*Le*Pr*n*f(eta)*g(eta)*(diff(h(eta), eta))/(1+n)-Le*Pr*S*(2-n)*eta*(diff(h(eta), eta))/(1+n)+Nt*(diff(j(eta), eta, eta))/Nb = 0, f(0) = 0, (D(f))(0) = 1, g(0) = 0, (D(g))(0) = alpha, (D(j))(0) = -b*(1-j(0))/(1+E*j(0)), (D(h))(0) = -d*(1-h(0)), (D(f))(N) = 0, (D(g))(N) = 0, j(N) = 0, h(N) = 0: d2 := subs(alpha = .2, M = .4, A = 1, S = .1, n = .5, Pr = 5, E = 1.5, Nb = .5, Nt = .2, Le = 1, lambda = .2, b = 1.2, d = .5, [de2]):
da2 := dsolve(d2, numeric, output = operator, maxmesh = 2048, method = bvp[midrich], abserr = 10);  
p1 := odeplot([da1, da2], [eta, diff(f(eta), eta), linestyle = 1, color = "Red", thickness = 2], labels = ["&eta;", "f' g' "], labeldirections = [HORIZONTAL, VERTICAL]);
p4 := odeplot(da2, [[eta, f(eta)], [eta, g(eta)], [eta, h(eta)], [eta, j(eta)]], color = [red, green, blue, black]);

Warning, computation is being performed near the boundary of the current precision, suggest increasing Digits to approximately 17 or efficiency may be degraded

 

Error, (in dsolve/numeric/bvp) Newton iteration is not converging

 

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

 


 

Download TwoSystems.mw

beta := 1: alpha[1] := 0.5:

f := beta+alpha[1]+sin(x*beta):

plot(f, x = 0 .. Pi, axes = boxed, size = [300, 270], labels = [x, "f ' (x)"], labelfont = ["Arial", 10, Bold], labeldirections = [horizontal, vertical], title=typeset("y                                        ",'beta' = 1,", ", 'alpha[1]' = 0.5), titlefont = ["Arial", 10, bold]);

                       

Or

restart;
beta := 1: alpha[1] := 0.5:
f := beta+alpha[1]+sin(x*beta):
plot(f, x = 0 .. Pi, axes = boxed, size = [300, 270], labels = [x, "f ' (x)"], labelfont = ["Arial", 10, Bold], labeldirections = [horizontal, vertical], title=typeset("\                                                    ",'beta' = 1,", ", 'alpha[1]' = 0.5), titlefont = ["Arial", 10, bold]);

 

AllPositions  procedure finds a set of all the positions of some element  in a multi-dimensional (or one-dimensional) list or rtable  . The level of nesting can be anything.

AllPositions:=proc(a, A::{list,rtable}, L::list(`=`))
local S, M;
M:={eval(subs(S=seq, foldl(S, '`if`(A[lhs~(L)[]]=a,lhs~(L),NULL)', op(L))))};
if nops(L)>1 then M else op~(M) fi;
end proc:


Example of use:

AllPositions(2, [[1, 2, 3], [2, 3, 5], [2, 4, 5]], [i=1..3, j=1..3]);

Output:             {[1, 2], [2, 1], [3, 1]}

Here is a procedure for this:

restart;
NestedSeq:=proc(Expr::uneval, L::list)
local S;
eval(subs(S=seq, foldl(S, Expr, op(L))));
end proc:

 

As an example, let's consider the numerological game "Cчастливый билет", known in Russia. A ticket in public transport is called lucky (a ticket is an ordered set of 6 digits, each digit is from 0 to 9), if the sum of the first three digits is equal to the sum of the last three. Below we find the list of all the lucky tickets:

LuckyTickets:=[NestedSeq(`if`(i+j+k=l+m+n,cat(i,j,k,l,m,n),NULL), [i,j,k,l,m,n]=~0..9)]: # List of all the lucky tickets
nops(LuckyTickets); # Total number of lucky tickets
seq(LuckyTickets[i],i=2..%,5000); # Examples of lucky tickets

                                                             55252
100100, 107701, 908791, 728782, 166373, 528654, 593935, 316226, 942807, 748397, 568388, 977689
 

This is impossible even if you know the function, because at the same value of the function, but at different points, the derivatives may differ. For example, cos(Pi/2)=cos(3*Pi/2)=0 , but the derivatives at these points are different. To calculate the derivative at individual points, it is better to use the differential operator  D .

In your example you can just write

diff(f(x),x)*eval(cos(f(x)), f(x)=0);


If you still want to apply  eval  to the whole expression, then the use of  D  operator is the simplest way:

eval(D(f)(x)*cos(f(x)), f(x)=0);  # Or
convert(eval(D(f)(x)*cos(f(x)), f(x)=0), diff);

 


 

restart; with(plots)

plot([sin, cos], -Pi .. Pi, title = "Simple Trig Functions", legend = ["Sine Plot", "Cosine Plot"], titlefont = ["ARIAL", 15], labels = ["x values", r^2*Re(C[f])], labeldirections = ["horizontal", "vertical"], labelfont = ["HELVETICA", 10], linestyle = [solid, longdash], axesfont = ["HELVETICA", "ROMAN", 8], tickmarks = [piticks, default], legendstyle = [font = ["HELVETICA", 9], location = right], scaling = constrained, size = [900, 400])

 

NULL


 

Download Help_new1.mw

This can be done in several ways. Here are two:

with(plots): with(plottools):
A:=[1, 2, 3]: B:=[4, 5, 6]:
spacecurve(A+t*~B, t=0..1, color=red, thickness=2);
display(line(A, B, color=red, thickness=2));

 

First 123 124 125 126 127 128 129 Last Page 125 of 289