Kitonum

21525 Reputation

26 Badges

17 years, 74 days

MaplePrimes Activity


These are answers submitted by Kitonum

DelBar2.mw 

 Here is the code, where only one joint edge of  adjacent polygons of the same color is deleted!

DelBar.mw

NULL

 

 

Code of the procedure

 

restart:

NULL

Example 1

 

DelBar([[pink, [[0, 0], [1, 1], [2, 1], [3, 0]]], [green, [[0, 0], [0, 1], [1, 3], [1, 1]]], [red, [[1, 3], [3, 2], [1, 2]]], [red, [[2, 2], [3, 2], [3, 0], [2, 1]]], [blue, [[1, 1], [1, 2], [2, 2], [2, 1]]]]);

 

NULL

 

Example 2

 

DelBar([[red, [[0, 0], [0, 4], [1, 4], [1, 0]]], [red, [[1, 3], [1, 4], [4, 4], [4, 0], [1, 0], [1, 1], [3, 1], [3, 3]]], [green, [[1, 1], [1, 3], [3, 3], [3, 1]]]]);

 

NULL

 

``

 

Example 3

 

DelBar([[red, [[0, 0], [0, 2], [2, 2], [2, 1], [3, 1], [3, 2], [4, 2], [4, 0]]], [green, [[0, 2], [0, 6], [3, 6], [3, 4], [2, 4], [2, 5], [1, 5], [1, 3], [2, 3], [2, 2]]], [blue, [[1, 3], [1, 5], [2, 5], [2, 3]]], [red, [[3, 2], [3, 6], [5, 6], [5, 2]]], [green, [[2, 1], [2, 4], [3, 4], [3, 1]]], [yellow, [[4, 0], [4, 2], [5, 2], [5, 0]]]]);

 

``



Download DelBar.mw

Since Your differential equation is of second order, we need another initial condition! Therefore, it is  impossible to plot your function, because there is an arbitrary constant.

See an option of solving your problem in file The_plot.mw

Thanks all for help in solving of the problem! 

First 288 289 290 Page 290 of 290