Kitonum

21435 Reputation

26 Badges

17 years, 24 days

MaplePrimes Activity


These are answers submitted by Kitonum

You can use nested  seq  for this. What we get is called not permutations but Cartesian product  


 

restart;
S:={0,1,2}:
seq(seq(seq(seq([u,x,y,z], z=S), y=S), x=S), u=S);

[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 2], [0, 0, 1, 0], [0, 0, 1, 1], [0, 0, 1, 2], [0, 0, 2, 0], [0, 0, 2, 1], [0, 0, 2, 2], [0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 0, 2], [0, 1, 1, 0], [0, 1, 1, 1], [0, 1, 1, 2], [0, 1, 2, 0], [0, 1, 2, 1], [0, 1, 2, 2], [0, 2, 0, 0], [0, 2, 0, 1], [0, 2, 0, 2], [0, 2, 1, 0], [0, 2, 1, 1], [0, 2, 1, 2], [0, 2, 2, 0], [0, 2, 2, 1], [0, 2, 2, 2], [1, 0, 0, 0], [1, 0, 0, 1], [1, 0, 0, 2], [1, 0, 1, 0], [1, 0, 1, 1], [1, 0, 1, 2], [1, 0, 2, 0], [1, 0, 2, 1], [1, 0, 2, 2], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 0, 2], [1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 0], [1, 1, 2, 1], [1, 1, 2, 2], [1, 2, 0, 0], [1, 2, 0, 1], [1, 2, 0, 2], [1, 2, 1, 0], [1, 2, 1, 1], [1, 2, 1, 2], [1, 2, 2, 0], [1, 2, 2, 1], [1, 2, 2, 2], [2, 0, 0, 0], [2, 0, 0, 1], [2, 0, 0, 2], [2, 0, 1, 0], [2, 0, 1, 1], [2, 0, 1, 2], [2, 0, 2, 0], [2, 0, 2, 1], [2, 0, 2, 2], [2, 1, 0, 0], [2, 1, 0, 1], [2, 1, 0, 2], [2, 1, 1, 0], [2, 1, 1, 1], [2, 1, 1, 2], [2, 1, 2, 0], [2, 1, 2, 1], [2, 1, 2, 2], [2, 2, 0, 0], [2, 2, 0, 1], [2, 2, 0, 2], [2, 2, 1, 0], [2, 2, 1, 1], [2, 2, 1, 2], [2, 2, 2, 0], [2, 2, 2, 1], [2, 2, 2, 2]

(1)

nops([%])=ifactor(nops([%]));

81 = ``(3)^4

(2)

 


 

Download nested_seq.mw


 

restart;
opt1:="a=1, b=2":
opt2:="a=0.7, b=3":
f:=a*x^b:
plot([eval(f,[parse(opt1)]),eval(f,[parse(opt2)])], x=-2..2, color=[red,blue], legend=[opt1,opt2], legendstyle=[location=left, font=[times,16]], scaling=constrained, size=[600,600]);

 

 


Edit: Here's another (prettier but more complex) version:

restart;
opt1:="a=1, b=2":
opt2:="a=0.7, b=3":
f:=a*x^b:
A:=plot([eval(f,[parse(opt1)]),eval(f,[parse(opt2)])], x=-2..2, color=[red,blue], thickness=2):
B:=plot([5.2,4.7], x=-0.9..-0.4, color=[red,blue], thickness=3):
T:=plots:-textplot([[-2.9,5.2,opt1],[-3.2,4.7,opt2]], font=[times,16], align=right):
plots:-display(A,B,T, scaling=constrained, size=[600,500]);

                          

 

Download legend.mw

restart;
A:=Matrix([[0,1,-1],[-1,-2,2],[-1,-2,2]]):
v:=Vector([-1,1,1]):
sol := LinearAlgebra:-LinearSolve(A,v);
indets(sol, 'indexed');

 

v:=[2,4,7];
ilcm( op(v));
# Or
ilcm(v[]);

 

In the help for  fsolve  we see  
"variables - (optional) name or set(name); unknowns for which to solve"

So use  x0  and  y0  instead (for example).


 

restart;

x%*x;

`%*`(x, x)

(1)

value(%);

x^2

(2)

 


 

Download inert.mw

restart;         
plot3d(eval([x,y,4*x^2+9*y^2],[x=1/2*r*cos(t),y=1/3*r*sin(t)]), r=0..1, t=0..2*Pi, axes=normal, scaling=constrained);


 

Download _paraboloid.mw

Use  LinearAlgebra:-GenerateMatrix  instead of  linalg:-genmatrix :

 

Download sys.mw

In Maple the imaginary unit should be coded as  I  not  :


 

restart;
with(LinearAlgebra):
with(plots, implicitplot):
i:=I:
M := Matrix([[sigma + Gamma*i*k + 0.5 + 0.5*tanh(c - v) + beta*v, -0.5 + 0.5*tanh(c - v), 0.5*(w - u)*sech^2*(c - v) - beta*u], [-0.5 - 0.5*tanh(c - v), sigma - i*k*Gamma + 0.5 + 0.5*tanh(c - v) + beta*v, 0.5*(u - w)*sech^2*(c - v) - beta*w], [-beta*v, -beta*v, sigma - beta*alpha*(u + w)]]);

Matrix(3, 3, {(1, 1) = sigma+I*GAMMA*k+.5+.5*tanh(c-v)+beta*v, (1, 2) = -.5+.5*tanh(c-v), (1, 3) = (.5*w-.5*u)*sech^2*(c-v)-beta*u, (2, 1) = -.5-.5*tanh(c-v), (2, 2) = sigma-I*GAMMA*k+.5+.5*tanh(c-v)+beta*v, (2, 3) = (.5*u-.5*w)*sech^2*(c-v)-beta*w, (3, 1) = -beta*v, (3, 2) = -beta*v, (3, 3) = sigma-beta*alpha*(u+w)})

(1)

Eq := Determinant(M);

.50*tanh(c-v)*sigma+1.0*tanh(c-v)*sigma^2+.50*tanh(c-v)^2*sigma+1.0*sigma^2+sigma^3-1.0*sigma*tanh(c-v)*beta*alpha*u-1.0*sigma*tanh(c-v)*beta*alpha*w-1.0*tanh(c-v)*beta^2*v*alpha*u-1.0*tanh(c-v)*beta^2*v*alpha*w+.50*tanh(c-v)*beta*v^2*sech^2*u-.50*tanh(c-v)*beta*v^2*sech^2*w-Gamma^2*k^2*beta*alpha*u-Gamma^2*k^2*beta*alpha*w-2*sigma*beta^2*v*alpha*u-2*sigma*beta^2*v*alpha*w+Gamma^2*k^2*sigma+beta^2*v^2*sigma+2*beta*v*sigma^2+1.0*beta*v*sigma-1.0*beta^2*v*w-beta^3*v^2*u-1.0*beta^2*v*u-beta^3*v^2*w-(1.0*I)*Gamma*k*beta*v*c*sech^2*w+(1.0*I)*Gamma*k*beta*v*c*sech^2*u-beta^2*v*u*sigma-.50*tanh(c-v)*beta*alpha*u-.50*tanh(c-v)*beta*alpha*w-.50*tanh(c-v)^2*beta*alpha*u-.50*tanh(c-v)^2*beta*alpha*w+1.0*tanh(c-v)*beta*v*sigma-1.0*tanh(c-v)*beta^2*v*u-1.0*sigma*beta*alpha*u-1.0*sigma*beta*alpha*w-1.0*beta^2*v*alpha*u-1.0*beta^2*v*alpha*w-sigma^2*beta*alpha*u-sigma^2*beta*alpha*w-sigma*beta^2*v*w-beta^3*v^2*alpha*u-beta^3*v^2*alpha*w-(1.0*I)*Gamma*k*beta*v^2*sech^2*u+(1.0*I)*Gamma*k*beta*v^2*sech^2*w-.50*tanh(c-v)*beta*v*c*sech^2*u+.50*tanh(c-v)*beta*v*c*sech^2*w+I*beta^2*v*u*Gamma*k-I*Gamma*k*beta^2*v*w

(2)

alpha := 0.1;
beta := 0.01;
mu := 0.5;
u := 0.5;
v := 1;
Gamma := 0.1;
c := 2;
w := 0.5;

.1

 

0.1e-1

 

.5

 

.5

 

1

 

.1

 

2

 

.5

(3)

p1i := evalc(Re(Eq));

(-0.11110e-3+0.*I)+0.8980e-2*sigma-0.5600e-3*tanh(1)-0.500e-3*tanh(1)^2+.50900*tanh(1)*sigma+1.0*tanh(1)*sigma^2+.50*tanh(1)^2*sigma+0.1e-1*k^2*sigma+1.0190*sigma^2-0.10e-4*k^2+sigma^3

(4)

p1 := implicitplot(Eq, k = 0 .. 10, sigma = -0.01 .. 0.01);

 

 


Edit.  evalc(Im(Eq))  returns  0. , that is  Eq  is real for real  k  and  sigma  and specific values the other parameters.
 

Download plot_new.mw

We easily get the same result (without the VectorCalculus package) using the standard way to calculate such a curvilinear integral:

restart;
x:=1+t: y:=2*t: # Parametric equations of the line with endpoints (1,0), (2,2)
int( (2*x + y^2)*sqrt(diff(x,t)^2+diff(y,t)^2), t=0..1);

                                        

I think that from a pedagogical point of view, a student studying mathematical analysis should be able to solve such simple examples by hand, and only then, of course, can he check the correctness of the calculations using Maple:

     

 


 

restart;
subexp := M__a*sin(omega*t + alpha)*I__a*sin(omega*t + phi);
subexp2:=factor(combine(subexp));
d:=M__a*I__a:
subexp22:=d*``(subexp2/d)

 

M__a*sin(omega*t+alpha)*I__a*sin(omega*t+phi)

 

(1/2)*M__a*I__a*(cos(alpha-phi)-cos(2*omega*t+alpha+phi))

 

M__a*I__a*``((1/2)*cos(alpha-phi)-(1/2)*cos(2*omega*t+alpha+phi))

(1)

 


 

Download identity.mw

restart;
with(Statistics):
X:=Vector([0,0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.01,0.012]):
Y:=Vector([1.103,1.057,1.016,0.978,0.94,0.91,0.88,0.85,0.826,0.8,0.778,0.735]):
Fn:=Fit((-a*t+b)/(-d+e*t+f*t^3),X,Y,t);
add((Y-~[seq(eval(Fn,t=x),x=X)])^~2); # residual sum of squares
plots:-display(plot(X,Y,style=point,color=red,symbolsize=12), plot(Fn,t=X[1]..X[-1],color=blue), labels=["X","Y"]);

Download RS.mw


 

restart;
A:=x<7: B:=-10<x and x<25: C:=x>15:

solve(A and B);

RealRange(Open(-10), 7)

(1)

solve(B or C);

RealRange(Open(-10), infinity)

(2)

solve(A and B and C); # Return NULL that is empty set

solve(A or B or C); # Whole real number axis

x

(3)

 


 

Download solve.mw


 

restart;
S:=proc(n)
local P;
uses combinat;
P:=permute([0$n,1$n]):
select(p->andmap(k->add(p[1..k])<=k/2, [$ 1..2*n]), P);
end proc:

S(3);
nops(%);
seq(nops(S(n)), n=1..7);

 

[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 1, 1], [0, 0, 1, 1, 0, 1], [0, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1]]

 

5

 

1, 2, 5, 14, 42, 132, 429

(1)

 


Edit.

Download seq_edit.mw

First 51 52 53 54 55 56 57 Last Page 53 of 289