Kitonum

21435 Reputation

26 Badges

17 years, 24 days

MaplePrimes Activity


These are answers submitted by Kitonum

Example:

-%int(x^2,x);

                                     

 

I think this is not a bug, but just such a design in Maple 2015. In subsequent versions of Maple, this command has been improved (the word  parameters  can be omitted). For example, in Maple 2018.2, the following code works correctly:

y := [1, 3, 8];
val := r->y[r]:
Explore(val(r), r=1..3);

 


 

diff(F(x(t),y(t)),t)=0;

(D[1](F))(x(t), y(t))*(diff(x(t), t))+(D[2](F))(x(t), y(t))*(diff(y(t), t)) = 0

(1)

 


 

Download diff.mw

In  display(L2,L22,L3,L1)  the previously recorded polygon  L2  closes the later recorded polygon  L22, but L1  and  L3  always lie higher (in Maple 2018.2). See the workaround below:

restart;
with(plots):
L1 := textplot([2, 2, "Polygon"], color = white, font=[times,bold,16]):
L2 := plottools:-polygon([[0, 0], [3, 4], [3, 1]], color = red):
L22 := plottools:-polygon([[0, 0], [0.5, 2], [1,0]], color = green):
L3 := contourplot(x^2 + y^2, x = 1 .. 1.5, y = 4/3*x..2):

display(L2,L22,L3,L1); 

                    

 

 

The  coords=polar  option doesn't seem to work (in Maple 2018.2), so I used Cartesian coordinates.
3 regions are plotted:

A:=plots:-inequal({sqrt(x^2+y^2)<2+2*x/sqrt(x^2+y^2),sqrt(x^2+y^2)>3},x=-3.3..4.3,y=-4.3..4.3, color=green):
B:=plots:-inequal({sqrt(x^2+y^2)>2+2*x/sqrt(x^2+y^2),sqrt(x^2+y^2)<3},x=-3.3..4.3,y=-4.3..4.3, color=blue):
C:=plots:-inequal({sqrt(x^2+y^2)<2+2*x/sqrt(x^2+y^2),sqrt(x^2+y^2)<3},x=-3.3..4.3,y=-4.3..4.3, color=red):
plots:-display(<A | B | C>, scaling=constrained);

             


 

We can get a general solution to your problem for an integer  n , if we first solve without initial conditions, and then impose these conditions and solve the corresponding system. We see that there is an infinite family of solutions  y(x)=C*sin(n*Pi*x)  (С is an any constant)  only if  A = 0. There are no any solutions if  A <> 0 .

restart;
ode := diff(y(x), x, x) + (n*Pi)^2*y(x) = A^3*sin(n*Pi*x)^3;
dsol1 := dsolve(ode);
Y:=eval(y(x),dsol1);
Sys:={eval(Y,x=0)=0, eval(Y,x=1)=0};
simplify(eval(op(2,Sys),_C1=0)) assuming n::integer;
solve(%, A,dropmultiplicity);

diff(diff(y(x), x), x)+n^2*Pi^2*y(x) = A^3*sin(n*Pi*x)^3

 

y(x) = sin(n*Pi*x)*_C2+cos(n*Pi*x)*_C1+(1/8)*(A^3*(cos(n*Pi*x)^2+2)*sin(n*Pi*x)-3*A^3*cos(n*Pi*x)*Pi*n*x)/(n^2*Pi^2)

 

sin(n*Pi*x)*_C2+cos(n*Pi*x)*_C1+(1/8)*(A^3*(cos(n*Pi*x)^2+2)*sin(n*Pi*x)-3*A^3*cos(n*Pi*x)*Pi*n*x)/(n^2*Pi^2)

 

{_C1 = 0, sin(n*Pi)*_C2+cos(n*Pi)*_C1+(1/8)*(A^3*(cos(n*Pi)^2+2)*sin(n*Pi)-3*A^3*cos(n*Pi)*Pi*n)/(n^2*Pi^2) = 0}

 

(3/8)*(-1)^(1+n)*A^3/(Pi*n) = 0

 

0

(1)

 


 

Download ode.mw

It is easy to achieve good visibility by simple means. I changed the style of the surfaces, removing the lines, each plane made in different colors and a few more minor changes. The solution itself is depicted as a bold red dot:

restart; with(plots):
sys := [p+x+.6*y-15, p+.3*x+.2*y-10, p+.5*x+y-14]:
sol:=solve(sys, [x, y, p])[];
A:=implicitplot3d(sys, x = 0 .. 10, y = 0 .. 10, p = 0 .. 10, style=surface, color=["LightBlue","LightGreen","Yellow"]):
B:=pointplot3d(eval([x,y,p],sol), color=red, symbol=solidsphere, symbolsize=15):
display(A,B, axes=normal, orientation=[-20,80], lightmodel=light4);

                   

 

 

 

Should be:

restart;

M:=Matrix(10, 10, [[1, 0, 0, 0, 1/2, 0, 0, 0, 0, 0], [0, 1/2, 0, 0, 0, 0, 0, 1/3, 0, 0], [0, 0, 1/2, 0, 0, 0, 0, 0, 1/3, 0], [0, 0, 0, 1/3, 0, 0, 0, 0, 0, 0], [1/2, 0, 0, 0, 1/3, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1/3, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1/4, 0, 0, 0], [0, 1/3, 0, 0, 0, 0, 0, 1/4, 0, 0], [0, 0, 1/3, 0, 0, 0, 0, 0, 1/4, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1/4]]);

B:=Matrix(10, 5, [[0, 0, 1/3, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 1/4, 0, 0, 0], [0, 0, 1/4, 0, 0], [0, 0, 0, 1/4, 0], [1/2, 1/2, 1, 0, 0], [1, 1/2, 1/2, 1, 0], [0, 1, 1/2, 1/2, 1], [0, 0, 1, 1/2, 1/2]]);

B^%T.M^(-1).B;

 


 

restart;

Collocation:=proc(Equation,dependent_variable,range,N)
local x, _f, a, b, h, P, Eq1, x0, Sys;
x:=op(1,dependent_variable);
_f:=op(0,dependent_variable);
a:=op(1,rhs(range)); b:=op(2,rhs(range));
h:=(b-a)/N;
assign(seq(x0[i]=a+i*h, i=0..N));
P:=unapply(add(c[k]*x^k, k=0..N),x);
Eq1:=eval(Equation,_f=P);

Sys:={seq(eval(Eq1,x=x0[i]),i=0..N)};
solve(Sys,{seq(c[k],k=0..N)});
eval(`+`(seq(c[k]*x^k, k=0..N)), %);

end proc:

Example of use

Digits:=20:
# Solution by Collocation method
P:=unapply(Collocation(Z(x)=3/2-9/2*exp(-2*x)-9/2*exp(-x)+1/2*int(exp(-y)*Z(x-y),y=0..ln(2)),Z(x),x=1.5..3.5,10),x);

# Exact solution
F:=x->-9*exp(-2*x)+9*exp(-x)/(ln(2)-2)+2;

# Comparison of both solutions
plot([P,F],0..5, color=[red,blue]);
[seq(P(x)-evalf(F(x)), x=1.5..3.5,0.1)];

proc (x) options operator, arrow; -0.12331554479342308695e-4*x^10+0.38406523011732251249e-3*x^9-0.55359297313193274728e-2*x^8+0.48997335594780008876e-1*x^7-.29762100374551440593*x^6+1.3111429281362668287*x^5-4.3026456739050720369*x^4+10.574218375318812660*x^3-19.071575613482829384*x^2+23.489066676139941227*x-13.487137706256138762 end proc

 

proc (x) options operator, arrow; -9*exp(-2*x)+9*exp(-x)/(ln(2)-2)+2 end proc

 

 

[0.17326801985283735e-2, 0.12016434569748980e-2, 0.8333501267695410e-3, 0.5779327587865551e-3, 0.4008013985378725e-3, 0.27796169050566898e-3, 0.1927713461022417e-3, 0.1336897818009491e-3, 0.927151362940010e-4, 0.642987199705022e-4, 0.445920185728026e-4, 0.309253274978769e-4, 0.214470405083015e-4, 0.148735704742324e-4, 0.103151400046713e-4, 0.71541423541688e-5, 0.49611837817266e-5, 0.34390816064619e-5, 0.23860399357984e-5, 0.16643576852610e-5, 0.11482234181911e-5]

(1)

``

(2)

 


 

Download Collocation.mw

If you work in the real domain then replace  (y^3)^(2/3)  with  surd((y^3)^2, 3) (see help on the surd command for details). Then we see that the result is true for  y<0  as well:

expr:=-1/6*(y^6-6*y^3*ln(x)+9*ln(x)^2)*y^2/surd((y^3)^2,3);
simplify(expr) assuming y>0;
simplify(expr) assuming y<0;

                  

 


This can be done in many ways. Here are 2 ones:

restart;
a1 := 5; b1 := 3; a2 := 3; b2 := 4; a3 := 3; b3 := 7;
eq1 := expand((y-2)^2/b1^2+(x-5)^2/a1^2 = 1):
eq2 := expand((y+2)^2/b2^2+(x+1)^2/a2^2 = 1):
Sys := {eq1, eq2};
Sol := [solve(Sys, explicit)]:
Sol1:=evalf(Sol);
L := remove(has, Sol1, I);

5

 

3

 

3

 

4

 

3

 

7

 

{(1/9)*y^2-(4/9)*y+13/9+(1/25)*x^2-(2/5)*x = 1, (1/16)*y^2+(1/4)*y+13/36+(1/9)*x^2+(2/9)*x = 1}

 

[{x = -5.904184041+4.979964478*I, y = 5.276003264+5.967296157*I}, {x = -5.904184041-4.979964478*I, y = 5.276003264-5.967296157*I}, {x = 0.15513671e-1, y = 1.763859011}, {x = 1.698810533, y = -.253169615}]

 

[{x = 0.15513671e-1, y = 1.763859011}, {x = 1.698810533, y = -.253169615}]

(1)

RealDomain:-solve(Sys);
evalf(%);

{x = RootOf(101761*_Z^4+1027180*_Z^3+4013700*_Z^2-10376000*_Z+160000, 0.1551366944e-1), y = -(319/1800)*RootOf(101761*_Z^4+1027180*_Z^3+4013700*_Z^2-10376000*_Z+160000, 0.1551366944e-1)^2-(161/180)*RootOf(101761*_Z^4+1027180*_Z^3+4013700*_Z^2-10376000*_Z+160000, 0.1551366944e-1)+16/9}, {x = RootOf(101761*_Z^4+1027180*_Z^3+4013700*_Z^2-10376000*_Z+160000, 1.698810530), y = -(319/1800)*RootOf(101761*_Z^4+1027180*_Z^3+4013700*_Z^2-10376000*_Z+160000, 1.698810530)^2-(161/180)*RootOf(101761*_Z^4+1027180*_Z^3+4013700*_Z^2-10376000*_Z+160000, 1.698810530)+16/9}

 

{x = 0.1551366944e-1, y = 1.763859010}, {x = 1.698810530, y = -.253169614}

(2)

 


 

Download RealSol.mw

We can easily get the answer in a closed form if we use  rsolve  command. To remove the sign of the sum, it is necessary to split this sum into 3 terms:


 

restart;
u := unapply(simplify(value(rsolve({u(1) = 1, u(n+1) = a*u(n)+b[irem(n, 3)]}, u(n)))), n);
U := n->a^(n-1)+sum(a^(n-2-3*k), k = 0 .. floor((n-2)*(1/3)))*b[1]+sum(a^(n-3-3*k), k = 0 .. floor((n-3)*(1/3)))*b[2]+sum(a^(n-4-3*k), k = 0 .. floor((n-4)*(1/3)))*b[0];

 

proc (n) options operator, arrow; a^(n-1)+sum(a^(n-n0)*b[irem(n0-1, 3)], n0 = 2 .. n) end proc

 

proc (n) options operator, arrow; a^(n-1)+(sum(a^(n-2-3*k), k = 0 .. floor((1/3)*n-2/3)))*b[1]+(sum(a^(n-3-3*k), k = 0 .. floor((1/3)*n-1)))*b[2]+(sum(a^(n-4-3*k), k = 0 .. floor((1/3)*n-4/3)))*b[0] end proc

(1)

V:=normal~(U(n)); # The result in a closed form (without sum)

-(a^(n-4)*a^3*b[0]*(1/a^3)^(floor((1/3)*n+2/3)-1)+a^(n-2)*a^3*b[1]*(1/a^3)^floor((1/3)*n+1/3)+a^(n-3)*a^3*b[2]*(1/a^3)^floor((1/3)*n)-a^(n-4)*a^3*b[0]-a^(n-2)*a^3*b[1]-a^(n-3)*a^3*b[2]-a^(n-1)*a^3+a^(n-1))/(a^3-1)

(2)

# Examples:
seq(u(n), n = 1 .. 10);
seq(U(n), n = 1 .. 10);

eval(V,[a=5,n=100]);
 

1, a+b[1], a^2+a*b[1]+b[2], a^3+a^2*b[1]+a*b[2]+b[0], a^4+a^3*b[1]+a^2*b[2]+a*b[0]+b[1], a^5+a^4*b[1]+a^3*b[2]+a^2*b[0]+a*b[1]+b[2], a^6+a^5*b[1]+a^4*b[2]+a^3*b[0]+a^2*b[1]+a*b[2]+b[0], a^7+a^6*b[1]+a^5*b[2]+a^4*b[0]+a^3*b[1]+a^2*b[2]+a*b[0]+b[1], a^8+a^7*b[1]+a^6*b[2]+a^5*b[0]+a^4*b[1]+a^3*b[2]+a^2*b[0]+a*b[1]+b[2], a^9+a^8*b[1]+a^7*b[2]+a^6*b[0]+a^5*b[1]+a^4*b[2]+a^3*b[0]+a^2*b[1]+a*b[2]+b[0]

 

1, a+b[1], a^2+a*b[1]+b[2], a^3+a^2*b[1]+a*b[2]+b[0], a^4+(a^3+1)*b[1]+a^2*b[2]+a*b[0], a^5+(a^4+a)*b[1]+(a^3+1)*b[2]+a^2*b[0], a^6+(a^5+a^2)*b[1]+(a^4+a)*b[2]+(a^3+1)*b[0], a^7+(a^6+a^3+1)*b[1]+(a^5+a^2)*b[2]+(a^4+a)*b[0], a^8+(a^7+a^4+a)*b[1]+(a^6+a^3+1)*b[2]+(a^5+a^2)*b[0], a^9+(a^8+a^5+a^2)*b[1]+(a^7+a^4+a)*b[2]+(a^6+a^3+1)*b[0]

 

12723562987435674280834331698109455317309781211435854915649660172001*b[0]+318089074685891857020858292452736382932744530285896372891241504300025*b[1]+63617814937178371404171658490547276586548906057179274578248300860005*b[2]+1577721810442023610823457130565572459346412870218046009540557861328125

(3)

 


Edit.

Download seq1.mw

The output how OP wants:

P:=combinat:-partition(5):
for p in P[1..-2] do
lprint(sort(p,`>`)[]);
od:

  1, 1, 1, 1, 1
  2, 1, 1, 1
  2, 2, 1
  3, 1, 1
  3, 2
  4, 1
 

Edit.

Your system with the specified conditions has no solutions. Since the system does not contain derivatives with respect to  t , we can easily solve it with  dsolve  command, where arbitrary constants  _C1,...,_C4  are some functions of  t . But if we impose the condition you specified on the function  f4 , then as a result we get that the trigonometric function  cos(2*Pi*x)  is expressed as a linear combination exponential functions with real exponents, which is impossible.


 

restart;
sys:={diff(f1(x,t),x)=2*f3(x,t)+3*f1(x,t)-f2(x,t),
diff(f2(x,t),x)=-2*f4(x,t)-3.2*f1(x,t)+f2(x,t),
diff(f3(x,t),x)=-3*f3(x,t)+3.2*f4(x,t)-0.045*f1(x,t),
diff(f4(x,t),x)=f3(x,t)-f1(x,t)};

{diff(f1(x, t), x) = 2*f3(x, t)+3*f1(x, t)-f2(x, t), diff(f2(x, t), x) = -2*f4(x, t)-3.2*f1(x, t)+f2(x, t), diff(f3(x, t), x) = -3*f3(x, t)+3.2*f4(x, t)-0.45e-1*f1(x, t), diff(f4(x, t), x) = f3(x, t)-f1(x, t)}

(1)

sol:=dsolve(sys);

{f1(x, t) = Sum(exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4), f2(x, t) = -(34251/8420)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))-(100/421)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)^2*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))+(105/421)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)^3*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))+(2072/421)*(Sum(exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4)), f3(x, t) = -(50/421)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)^2*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))+(105/842)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)^3*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))-(25831/16840)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))+(809/842)*(Sum(exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4)), f4(x, t) = -(1631/842)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))+(5/842)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)^2*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))+(15189/16840)*(Sum(exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))+(50/421)*(Sum(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)^3*exp(RootOf(100*_Z^4-100*_Z^3-1531*_Z^2+2051*_Z+33, index = _a)*x)*_C[_a], _a = 1 .. 4))}

(2)

Sol:=evalf(sol);

{((-0.5039281105e-1*exp(2.43231065*x)-3115115.174*exp(-3.01590117*x)+2.489875005*exp(1.008673509*x)-650180.6452*exp(-7.040475849*x)+0.2912437552e-1*exp(3.855947791*x)-0.2043682656e-3*exp(4.673215727*x)+0.2043682656e-3*exp(4.673215726*x)+0.5997212653e-3*exp(4.673215728*x)-0.3978527903e-4*exp(6.096852868*x)-.6188029874*exp(2.432310651*x)+0.7026909568e-5*exp(6.096852867*x)-262.6678838*exp(.648641048*x)-123.9419652*exp(.648641047*x)+1510020.191*exp(-3.015901169*x)+343721.8888*exp(-1.592264029*x))*cos(6.283185307*x)-0.5029634521e-6*exp(5.41640948*x-2.*t)-.8212273493*exp(-0.3180233972e-1*x-2.*t)+0.1729367661e-7*exp(6.840046622*x-2.*t)+0.1045624048e-9*exp(7.657314556*x-2.*t)+40.87934669*exp(-.391834802*x-2.*t)-498044.7000*exp(-4.056377018*x-2.*t)+529403.5743*exp(-4.056377019*x-2.*t)+127.5141799*exp(-.391834801*x-2.*t)-0.1978039762e-3*exp(3.632739878*x-2.*t)-282800.8806*exp(-2.632739878*x-2.*t)-0.2396238934e-1*exp(2.815471942*x-2.*t)-0.1308193918e-3*exp(3.632739877*x-2.*t)+.8077821732*exp(1.391834801*x-2.*t)+0.2747320054e-7*exp(6.840046621*x-2.*t)-0.1978039762e-3*exp(3.632739879*x-2.*t)+0.2160915781e-4*exp(5.056377019*x-2.*t)+0.3068397020e-9*exp(7.657314558*x-2.*t)-0.1676040004e-10*exp(9.080951698*x-2.*t)-0.1676040004e-10*exp(9.080951699*x-2.*t)+0.7191166739e-12*exp(10.50458884*x-2.*t)+0.1146142892e-5*exp(5.056377018*x-2.*t)-0.2116248203e-11*exp(9.080951697*x-2.*t)+.1618971255*exp(1.391834802*x-2.*t)-0.3166026206e-6*exp(5.416409481*x-2.*t)+.7725824844*exp(-0.3180233886e-1*x-2.*t))/((.7900900611*exp(1.407735971*x)-0.1906269683e-3*exp(3.648641048*x)+2.322460986*exp(-0.1590116986e-1*x)+1.000000000*exp(-4.040475849*x))*(-0.5462265782e-1*exp(5.44821182*x)+1.000000000*exp(4.02457468*x)-644649.2253)) = exp(1.407735971*x)*_C[1]+exp(3.648641048*x)*_C[2]+exp(-0.1590116986e-1*x)*_C[3]+exp(-4.040475849*x)*_C[4], -1185448773.*exp(1.407735971*x)*(0.4079437690e28*exp(-2.*t)*exp(3.648641048*x)-0.3592430222e33*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.1995460577e39*exp(-4.040475849*x)*exp(-2.*t)-0.6050031418e39*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+635718555.4*exp(3.648641048*x)*(0.7607083925e28*exp(1.407735971*x)*exp(-2.*t)-0.1392660890e30*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.8977777638e35*exp(-4.040475849*x)*exp(-2.*t)-0.2721969634e36*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))-1865524157.*exp(-0.1590116986e-1*x)*(0.2282812571e33*exp(1.407735971*x)*exp(-2.*t)-0.4745799543e29*exp(-2.*t)*exp(3.648641048*x)+0.3727324735e39*exp(-4.040475849*x)*exp(-2.*t)-0.1130085682e40*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+0.3965969949e18*exp(-4.040475849*x)*(0.5964534079e30*exp(1.407735971*x)*exp(-2.*t)-0.1439077931e27*exp(-2.*t)*exp(3.648641048*x)+0.1753269547e31*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.2288834567e31*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x)) = -1.481810966*exp(1.407735971*x)*_C[1]-.3178592777*exp(3.648641048*x)*_C[2]+.9327620787*exp(-0.1590116986e-1*x)*_C[3]+.9914924873*exp(-4.040475849*x)*_C[4], -868798879.2*exp(1.407735971*x)*(0.4079437690e28*exp(-2.*t)*exp(3.648641048*x)-0.3592430222e33*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.1995460577e39*exp(-4.040475849*x)*exp(-2.*t)-0.6050031418e39*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+319508802.0*exp(3.648641048*x)*(0.7607083925e28*exp(1.407735971*x)*exp(-2.*t)-0.1392660890e30*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.8977777638e35*exp(-4.040475849*x)*exp(-2.*t)-0.2721969634e36*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))-1970335983.*exp(-0.1590116986e-1*x)*(0.2282812571e33*exp(1.407735971*x)*exp(-2.*t)-0.4745799543e29*exp(-2.*t)*exp(3.648641048*x)+0.3727324735e39*exp(-4.040475849*x)*exp(-2.*t)-0.1130085682e40*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))-0.1202440581e19*exp(-4.040475849*x)*(0.5964534079e30*exp(1.407735971*x)*exp(-2.*t)-0.1439077931e27*exp(-2.*t)*exp(3.648641048*x)+0.1753269547e31*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.2288834567e31*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x)) = -1.085998599*exp(1.407735971*x)*_C[1]-.159754401*exp(3.648641048*x)*_C[2]+.9851679917*exp(-0.1590116986e-1*x)*_C[3]-3.006101452*exp(-4.040475849*x)*_C[4], -463786536.5*exp(1.407735971*x)*(0.4079437690e28*exp(-2.*t)*exp(3.648641048*x)-0.3592430222e33*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.1995460577e39*exp(-4.040475849*x)*exp(-2.*t)-0.6050031418e39*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+1936299722.*exp(3.648641048*x)*(0.7607083925e28*exp(1.407735971*x)*exp(-2.*t)-0.1392660890e30*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.8977777638e35*exp(-4.040475849*x)*exp(-2.*t)-0.2721969634e36*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))-9972474306.*exp(-0.1590116986e-1*x)*(0.2282812571e33*exp(1.407735971*x)*exp(-2.*t)-0.4745799543e29*exp(-2.*t)*exp(3.648641048*x)+0.3727324735e39*exp(-4.040475849*x)*exp(-2.*t)-0.1130085682e40*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+0.4113091756e18*exp(-4.040475849*x)*(0.5964534079e30*exp(1.407735971*x)*exp(-2.*t)-0.1439077931e27*exp(-2.*t)*exp(3.648641048*x)+0.1753269547e31*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.2288834567e31*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x)) = -.5797331706*exp(1.407735971*x)*_C[1]-.968149861*exp(3.648641048*x)*_C[2]+4.986237153*exp(-0.1590116986e-1*x)*_C[3]+1.028272939*exp(-4.040475849*x)*_C[4]}

(3)

f1, f2, f3, f4:=seq(unapply(rhs(Sol[i]),x,t), i=1..4);
exp(-3*x)*cos(2*Pi*x)=f4(x,0);
combine(%/exp(-3*x));
applyop(combine@expand,2,%); # This is impossible

proc (x, t) options operator, arrow; table( [( x, t ) = ((-0.5039281105e-1*exp(2.43231065*x)-3115115.174*exp(-3.01590117*x)+2.489875005*exp(1.008673509*x)-650180.6452*exp(-7.040475849*x)+0.2912437552e-1*exp(3.855947791*x)-0.2043682656e-3*exp(4.673215727*x)+0.2043682656e-3*exp(4.673215726*x)+0.5997212653e-3*exp(4.673215728*x)-0.3978527903e-4*exp(6.096852868*x)-.6188029874*exp(2.432310651*x)+0.7026909568e-5*exp(6.096852867*x)-262.6678838*exp(.648641048*x)-123.9419652*exp(.648641047*x)+1510020.191*exp(-3.015901169*x)+343721.8888*exp(-1.592264029*x))*cos(6.283185307*x)-0.5029634521e-6*exp(5.41640948*x-2.*t)-.8212273493*exp(-0.3180233972e-1*x-2.*t)+0.1729367661e-7*exp(6.840046622*x-2.*t)+0.1045624048e-9*exp(7.657314556*x-2.*t)+40.87934669*exp(-.391834802*x-2.*t)-498044.7000*exp(-4.056377018*x-2.*t)+529403.5743*exp(-4.056377019*x-2.*t)+127.5141799*exp(-.391834801*x-2.*t)-0.1978039762e-3*exp(3.632739878*x-2.*t)-282800.8806*exp(-2.632739878*x-2.*t)-0.2396238934e-1*exp(2.815471942*x-2.*t)-0.1308193918e-3*exp(3.632739877*x-2.*t)+.8077821732*exp(1.391834801*x-2.*t)+0.2747320054e-7*exp(6.840046621*x-2.*t)-0.1978039762e-3*exp(3.632739879*x-2.*t)+0.2160915781e-4*exp(5.056377019*x-2.*t)+0.3068397020e-9*exp(7.657314558*x-2.*t)-0.1676040004e-10*exp(9.080951698*x-2.*t)-0.1676040004e-10*exp(9.080951699*x-2.*t)+0.7191166739e-12*exp(10.50458884*x-2.*t)+0.1146142892e-5*exp(5.056377018*x-2.*t)-0.2116248203e-11*exp(9.080951697*x-2.*t)+.1618971255*exp(1.391834802*x-2.*t)-0.3166026206e-6*exp(5.416409481*x-2.*t)+.7725824844*exp(-0.3180233886e-1*x-2.*t))/((.7900900611*exp(1.407735971*x)-0.1906269683e-3*exp(3.648641048*x)+2.322460986*exp(-0.1590116986e-1*x)+1.000000000*exp(-4.040475849*x))*(-0.5462265782e-1*exp(5.44821182*x)+1.000000000*exp(4.02457468*x)-644649.2253)) ] ) exp(1.407735971*x)*_C[1]+exp(3.648641048*x)*_C[2]+exp(-0.1590116986e-1*x)*_C[3]+exp(-4.040475849*x)*_C[4] end proc, proc (x, t) options operator, arrow; table( [( x, t ) = -1185448773.*exp(1.407735971*x)*(0.4079437690e28*exp(-2.*t)*exp(3.648641048*x)-0.3592430222e33*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.1995460577e39*exp(-4.040475849*x)*exp(-2.*t)-0.6050031418e39*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+635718555.4*exp(3.648641048*x)*(0.7607083925e28*exp(1.407735971*x)*exp(-2.*t)-0.1392660890e30*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.8977777638e35*exp(-4.040475849*x)*exp(-2.*t)-0.2721969634e36*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))-1865524157.*exp(-0.1590116986e-1*x)*(0.2282812571e33*exp(1.407735971*x)*exp(-2.*t)-0.4745799543e29*exp(-2.*t)*exp(3.648641048*x)+0.3727324735e39*exp(-4.040475849*x)*exp(-2.*t)-0.1130085682e40*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+0.3965969949e18*exp(-4.040475849*x)*(0.5964534079e30*exp(1.407735971*x)*exp(-2.*t)-0.1439077931e27*exp(-2.*t)*exp(3.648641048*x)+0.1753269547e31*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.2288834567e31*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x)) ] ) -1.481810966*exp(1.407735971*x)*_C[1]-.3178592777*exp(3.648641048*x)*_C[2]+.9327620787*exp(-0.1590116986e-1*x)*_C[3]+.9914924873*exp(-4.040475849*x)*_C[4] end proc, proc (x, t) options operator, arrow; table( [( x, t ) = -868798879.2*exp(1.407735971*x)*(0.4079437690e28*exp(-2.*t)*exp(3.648641048*x)-0.3592430222e33*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.1995460577e39*exp(-4.040475849*x)*exp(-2.*t)-0.6050031418e39*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+319508802.0*exp(3.648641048*x)*(0.7607083925e28*exp(1.407735971*x)*exp(-2.*t)-0.1392660890e30*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.8977777638e35*exp(-4.040475849*x)*exp(-2.*t)-0.2721969634e36*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))-1970335983.*exp(-0.1590116986e-1*x)*(0.2282812571e33*exp(1.407735971*x)*exp(-2.*t)-0.4745799543e29*exp(-2.*t)*exp(3.648641048*x)+0.3727324735e39*exp(-4.040475849*x)*exp(-2.*t)-0.1130085682e40*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))-0.1202440581e19*exp(-4.040475849*x)*(0.5964534079e30*exp(1.407735971*x)*exp(-2.*t)-0.1439077931e27*exp(-2.*t)*exp(3.648641048*x)+0.1753269547e31*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.2288834567e31*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x)) ] ) -1.085998599*exp(1.407735971*x)*_C[1]-.159754401*exp(3.648641048*x)*_C[2]+.9851679917*exp(-0.1590116986e-1*x)*_C[3]-3.006101452*exp(-4.040475849*x)*_C[4] end proc, proc (x, t) options operator, arrow; table( [( x, t ) = -463786536.5*exp(1.407735971*x)*(0.4079437690e28*exp(-2.*t)*exp(3.648641048*x)-0.3592430222e33*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.1995460577e39*exp(-4.040475849*x)*exp(-2.*t)-0.6050031418e39*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+1936299722.*exp(3.648641048*x)*(0.7607083925e28*exp(1.407735971*x)*exp(-2.*t)-0.1392660890e30*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.8977777638e35*exp(-4.040475849*x)*exp(-2.*t)-0.2721969634e36*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))-9972474306.*exp(-0.1590116986e-1*x)*(0.2282812571e33*exp(1.407735971*x)*exp(-2.*t)-0.4745799543e29*exp(-2.*t)*exp(3.648641048*x)+0.3727324735e39*exp(-4.040475849*x)*exp(-2.*t)-0.1130085682e40*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x))+0.4113091756e18*exp(-4.040475849*x)*(0.5964534079e30*exp(1.407735971*x)*exp(-2.*t)-0.1439077931e27*exp(-2.*t)*exp(3.648641048*x)+0.1753269547e31*exp(-0.1590116986e-1*x)*exp(-2.*t)+0.2288834567e31*exp(-3.*x)*cos(6.283185307*x))/(0.7172002320e48*exp(1.407735971*x)-0.1730406603e45*exp(3.648641048*x)+0.2108202140e49*exp(-0.1590116986e-1*x)+0.9077449111e48*exp(-4.040475849*x)) ] ) -.5797331706*exp(1.407735971*x)*_C[1]-.968149861*exp(3.648641048*x)*_C[2]+4.986237153*exp(-0.1590116986e-1*x)*_C[3]+1.028272939*exp(-4.040475849*x)*_C[4] end proc

 

exp(-3*x)*cos(2*Pi*x) = -.5797331706*exp(1.407735971*x)*_C[1]-.968149861*exp(3.648641048*x)*_C[2]+4.986237153*exp(-0.1590116986e-1*x)*_C[3]+1.028272939*exp(-4.040475849*x)*_C[4]

 

cos(2*Pi*x) = exp(3*x)*(-.5797331706*exp(1.407735971*x)*_C[1]-.968149861*exp(3.648641048*x)*_C[2]+4.986237153*exp(-0.1590116986e-1*x)*_C[3]+1.028272939*exp(-4.040475849*x)*_C[4])

 

cos(2*Pi*x) = -.5797331706*_C[1]*exp(4.407735971*x)-.968149861*_C[2]*exp(6.648641048*x)+4.986237153*_C[3]*exp(2.984098830*x)+1.028272939*_C[4]*exp(-1.040475849*x)

(4)

 


 

Download system.mw

I guess these two pictures (a) and (b)  are probably made in Matlab? Of course, you can do something similar in Maple. In the example below, the first plot from your file was made in Maple 2018.2:

g11:=plot3d(UU(x,t),x=0..xbas,t=0..tbas,color="LightBlue",title='NumericalSolution', titlefont=[times,18]):
xz:=plot3d([x,1,z],x=0..1,z=0..1,style=line,color=blue,thickness=0,grid=[3,6]):
tz:=plot3d([0,t,z],t=0..1,z=0..1,style=line,color=blue,thickness=0,grid=[3,6]):
xt:=plot3d([x,t,0],x=0..1,t=0..1,style=line,color=blue,thickness=0,grid=[3,3]):
display(g11,xz,tz,xt,lightmodel=none,tickmarks=[3,3,6],labels=[x,t,"UU(x,t)"],labeldirections=[horizontal,horizontal,vertical], labelfont=[times,14],axes=frame, view=[0..1,0..1,0..1]);

                      

 

First 66 67 68 69 70 71 72 Last Page 68 of 289