Kitonum

21710 Reputation

26 Badges

17 years, 187 days

MaplePrimes Activity


These are answers submitted by Kitonum

plots:-display(plottools:-circle());
plot([cos(t),sin(t), t=0..2*Pi]);
plots:-implicitplot(x^2+y^2=1, x=-1..1,y=-1..1);


More 3 ways:

plot(1, phi=0..2*Pi, coords=polar);
plot([sqrt(1-x^2),-sqrt(1-x^2)], x=-1..1, color=black);
geometry:-draw(geometry:-circle(c,[geometry:-point(A,0,0),1]));


Edit.
 

f:=sqrt(x)*ln(y);
solve(map(Im, evalc(f)), {x,y});
                         

 

 

because in accordance with your boundary conditions:

eval(dsys3[3], [w(x) = 0, (D(w))(x) = 0, ((D@@2)(w))(x) = 0]);
                                       
 0.3693149535

Do not use  and  for this. Use curly braces instead in  solve  command:

solve({x>-infinity, x<infinity, x<>1/2}, x);
                           
 

    

You can not plot contour graphs for the function  lambda , because for fixed variables  Nb  and  Gamma2 , you get a function from only one variable  delta2 . Below are contour plots for  lambda  when  delta2=0.02..0.1  and   Nb=0.1...0.3 :

restart;
  h:=z->1-(delta2/2)*(1 + cos(2*(Pi/L1)*(z - d1 - L1))):
  K1:=((4/h(z)^4)-(sin(alpha)/Gamma2)-h(z)^2+Nb*h(z)^4):
  lambda:=unapply(Int(K1,z=0..1), Gamma2):
  L1:=0.2:
  d1:=0.2:
  alpha:=Pi/6:
 with(plots):
  display
  ( Matrix(3,2, [seq(contourplot(lambda(Gamma2), delta2=0.02..0.1,       Nb=0.1...0.3, labels=[typeset(`&delta;1`), typeset(conjugate(`&Delta;p`))], title=typeset("Effect of ", ''alpha'', " when ", Gamma,"2=", Gamma2)), Gamma2 in [10,20,30,40,50,-10])]));  


Purely visually, these graphics are almost indistinguishable. Compare:

contourplot(lambda(-10), delta2=0.02..0.1,  Nb=0.1...0.3);
contourplot(lambda(50), delta2=0.02..0.1,  Nb=0.1...0.3);

 

Since your parameters  N  and  m  each have 3 values, then there will be 3 * 3 = 9 all possible combinations. Therefore, you need nested loops to solve the system. But there is a new problem: Maple writes that there are too few boundary conditions:


 

``

``

w := .572433; x := 1.32156; y := 5.29387; z := .853043; b := -.1; pr := 6.2; m := [.5, 1, 1.5]; N := [10, 20, 30]; K := [black, red, green, blue, green, orange, gold, gray]; L := [solid, solid, solid, dash, solid, dot, dash]

for i to 3 do for j to 3 do sol1[i, j] := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+w*x*(f(eta)*(diff(diff(f(eta), eta), eta))-m[j]^2*(diff(f(eta), eta))-(diff(f(eta), eta))^2) = 0, y*(diff(diff(theta(eta), eta), eta))/(pr*z)-b*f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))-b*f(eta)^2*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta)) = 0, f(0) = N[i], (D(f))(0) = 1, (D(f))(20) = 0, theta(0) = 1, theta(20) = 0], numeric, method = bvp); fplt[i, j] := plots[odeplot](sol1[i, j], [eta, f(eta)], color = K[i], axes = boxed, linestyle = L[j]); tplt[i, j] := plots[odeplot](sol1[i, j], [eta, theta(eta)], color = K[i], axes = box, linestyle = L[j]) end do end do; plots:-display(seq(seq(fplt[i, j], i = 1 .. 3), j = 1 .. 3)); plots:-display(seq(seq(tplt[i, j], i = 1 .. 3), j = 1 .. 3))

Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 13, got 5

 

Error, (in plots:-display) expecting plot structure but received: fplt[1, 1]

 

Error, (in plots:-display) expecting plot structure but received: tplt[1, 1]

 

NULL

NULL


 

Download MHD_cchf_2_new.mw

You need to fill the space between the cube and the sphere with something, but so that it does not block the sphere. I suggest that you do this with red points using  plots:-pointplot3d command. Here are 2 options: in the first variant, the points fill the entire space between the cube and the sphere, in the second one - half of this space:

with(plottools): with(plots):
A:=sphere(color=pink, style=surface):
B1:=pointplot3d([seq(seq(seq(`if`(i^2+j^2+k^2>1,[i,j,k],NULL),i=-1..1,0.1),j=-1..1,0.1),k=-1..1,0.1)], color=red,symbolsize=12):
B2:=pointplot3d([seq(seq(seq(`if`(i^2+j^2+k^2>1  and i<=0,[i,j,k],NULL),i=-1..1,0.1),j=-1..1,0.1),k=-1..1,0.1)], color=red,symbolsize=12):
display(<display(A,B1) | display(A,B2)>);
       

Here are 2 options for plotting: the first 10 and the first 20 Fibonacci numbers. As the numbers increase rather quickly, on the second plot, the difference between the first 9 numbers is almost invisible:

seq(combinat:-fibonacci(n), n=1..20);
plot([seq([n,combinat:-fibonacci(n)], n=1..10)], style=point);
plot([seq([n,combinat:-fibonacci(n)], n=1..20)], style=point);

 

I made a few fixes in your code:

restart;
N:=4; alpha:=5*3.14/180; r:=10; Ha:=5; H:=1;
dsolve(diff(f(x),x,x,x));
Rf:=diff(f[m-1](x),x,x,x)+2*alpha*r*sum*(f[m-1-n](x)*diff(f[n](x),x),n=0..m-1)
+(4-Ha)*(alpha)^2*diff(f[m-1](x),x);
dsolve(diff(f[m](x),x,x,x)-CHI[m]*(diff(f[m-1](x),x,x,x))=h*H*Rf,f[m](x));
f[0](x):=1-x^2;
for m from 1 by 1 to N do
CHI[m]:=`if`(m>1,1,0);
f[m](x):=int(int(int(CHI[m]*(diff(f[m-1](x),x,x,x))+h*H(diff(f[m-1](x),x,x,x))
+2*h*H*alpha*r*(sum(f[m-1-n](x)*(diff(f[n](x),x)),n=0..m-1))+4*h*H*alpha^2*
(diff(f[m-1](x),x))-h*H*alpha^2*(diff(f[m-1](x),x))*Ha,x),x)+_C1*x,x)+_C2*x+_C3;
s1:=evalf(subs(x=0,f[m](x)))=0;
s2:=evalf(subs(x=0,diff(f[m](x),x)))=0;
s3:=evalf(subs(x=1,f[m](x)))=0;
s:={s1,s2,s3}:
f[m](x):=simplify(subs(solve(s,{_C1,_C2,_C3}),f[m](x)));
end do;
f(x):=sum(f[i](x),i=0..N);
hh:=evalf(subs(x=1,diff(f(x),x))):
plot(hh,h=-1.5..-0.2);
A(x):=subs(h=-0.9,f(x));
plot(A(x),x=0..1);

 

The  coeff  command does not work for extracting the coefficients of polynomials from several variables. A special procedure is required for this. The  coefff  procedure extracts the coefficient in front of a monomial  t of the polynomial  P  from the variables  T .
 

restart;
H1 := 3*y^4*a[1]^5*b[1]+6*y^4*a[1]^3*b[1]^3+3*y^4*a[1]*b[1]^5+6*x*y^3*a[1]^5+6*x*y^3*a[1]^4*b[1]+12*x*y^3*a[1]^3*b[1]^2+12*x*y^3*a[1]^2*b[1]^3+6*x*y^3*a[1]*b[1]^4+6*x*y^3*b[1]^5+6*y^3*a[1]^5*b[2]+6*y^3*a[1]^4*a[2]*b[1]+12*y^3*a[1]^3*b[1]^2*b[2]+12*y^3*a[1]^2*a[2]*b[1]^3+6*y^3*a[1]*b[1]^4*b[2]+6*y^3*a[2]*b[1]^5+18*x^2*y^2*a[1]^4+36*x^2*y^2*a[1]^2*b[1]^2+18*x^2*y^2*b[1]^4+18*x*y^2*a[1]^4*a[2]+18*x*y^2*a[1]^4*b[2]+36*x*y^2*a[1]^2*a[2]*b[1]^2+36*x*y^2*a[1]^2*b[1]^2*b[2]+18*x*y^2*a[2]*b[1]^4+18*x*y^2*b[1]^4*b[2]+18*y^2*a[1]^4*a[2]*b[2]+36*y^2*a[1]^2*a[2]*b[1]^2*b[2]+18*y^2*a[2]*b[1]^4*b[2]-5*delta*y^2*a[1]^4-8*delta*y^2*a[1]^3*b[1]-10*delta*y^2*a[1]^2*b[1]^2-8*delta*y^2*a[1]*b[1]^3-5*delta*y^2*b[1]^4+12*x^3*y*a[1]^3+12*x^3*y*a[1]^2*b[1]+12*x^3*y*a[1]*b[1]^2+12*x^3*y*b[1]^3+36*x^2*y*a[1]^3*a[2]+36*x^2*y*a[1]^2*b[1]*b[2]+36*x^2*y*a[1]*a[2]*b[1]^2+36*x^2*y*b[1]^3*b[2]+18*x*y*a[1]^3*a[2]^2+36*x*y*a[1]^3*a[2]*b[2]-18*x*y*a[1]^3*b[2]^2-18*x*y*a[1]^2*a[2]^2*b[1]+36*x*y*a[1]^2*a[2]*b[1]*b[2]+18*x*y*a[1]^2*b[1]*b[2]^2+18*x*y*a[1]*a[2]^2*b[1]^2+36*x*y*a[1]*a[2]*b[1]^2*b[2]-18*x*y*a[1]*b[1]^2*b[2]^2-18*x*y*a[2]^2*b[1]^3+36*x*y*a[2]*b[1]^3*b[2]+18*x*y*b[1]^3*b[2]^2+18*y*a[1]^3*a[2]^2*b[2]-6*y*a[1]^3*b[2]^3-6*y*a[1]^2*a[2]^3*b[1]+18*y*a[1]^2*a[2]*b[1]*b[2]^2+18*y*a[1]*a[2]^2*b[1]^2*b[2]-6*y*a[1]*b[1]^2*b[2]^3-6*y*a[2]^3*b[1]^3+18*y*a[2]*b[1]^3*b[2]^2-16*delta*x*y*a[1]^3-20*delta*x*y*a[1]^2*b[1]-20*delta*x*y*a[1]*b[1]^2-16*delta*x*y*b[1]^3-10*delta*y*a[1]^3*a[2]-6*delta*y*a[1]^3*b[2]-10*delta*y*a[1]^2*a[2]*b[1]-10*delta*y*a[1]^2*b[1]*b[2]-10*delta*y*a[1]*a[2]*b[1]^2-10*delta*y*a[1]*b[1]^2*b[2]-6*delta*y*a[2]*b[1]^3-10*delta*y*b[1]^3*b[2]+12*x^4*a[1]*b[1]+12*x^3*a[1]^2*a[2]-12*x^3*a[1]^2*b[2]+24*x^3*a[1]*a[2]*b[1]+24*x^3*a[1]*b[1]*b[2]-12*x^3*a[2]*b[1]^2+12*x^3*b[1]^2*b[2]+18*x^2*a[1]^2*a[2]^2-18*x^2*a[1]^2*b[2]^2+72*x^2*a[1]*a[2]*b[1]*b[2]-18*x^2*a[2]^2*b[1]^2+18*x^2*b[1]^2*b[2]^2+6*x*a[1]^2*a[2]^3+18*x*a[1]^2*a[2]^2*b[2]-18*x*a[1]^2*a[2]*b[2]^2-6*x*a[1]^2*b[2]^3-12*x*a[1]*a[2]^3*b[1]+36*x*a[1]*a[2]^2*b[1]*b[2]+36*x*a[1]*a[2]*b[1]*b[2]^2-12*x*a[1]*b[1]*b[2]^3-6*x*a[2]^3*b[1]^2-18*x*a[2]^2*b[1]^2*b[2]+18*x*a[2]*b[1]^2*b[2]^2+6*x*b[1]^2*b[2]^3+6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-10*delta*x^2*a[1]^2-16*delta*x^2*a[1]*b[1]-10*delta*x^2*b[1]^2-16*delta*x*a[1]^2*a[2]-4*delta*x*a[1]^2*b[2]-16*delta*x*a[1]*a[2]*b[1]-16*delta*x*a[1]*b[1]*b[2]-4*delta*x*a[2]*b[1]^2-16*delta*x*b[1]^2*b[2]-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*y^2*a[1]^2+48*y^2*a[1]*b[1]+16*y^2*b[1]^2+80*x*y*a[1]+80*x*y*b[1]+32*y*a[1]*a[2]+48*y*a[1]*b[2]+48*y*a[2]*b[1]+32*y*b[1]*b[2]+80*x^2+80*x*a[2]+80*x*b[2]+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta;

Equation := 12:
printlevel := 2:

coefff:=proc(P,T,t)
local L,H,i,k:
L:=[coeffs(P,T,'h')]: H:=[h]: k:=0:
for i from 1 to nops(H) do
if H[i]=t then k:=L[i] fi:
od:
k;
end proc:

for i from 0 to Equation do
for j from 0 to Equation do
C[i, j]:=coefff(H1, {x,y}, x^i*y^j) = 0;

end do;
end do;

3*y^4*a[1]^5*b[1]+6*y^4*a[1]^3*b[1]^3+3*y^4*a[1]*b[1]^5+6*x*y^3*a[1]^5+6*x*y^3*a[1]^4*b[1]+12*x*y^3*a[1]^3*b[1]^2+12*x*y^3*a[1]^2*b[1]^3+6*x*y^3*a[1]*b[1]^4+6*x*y^3*b[1]^5+6*y^3*a[1]^5*b[2]+6*y^3*a[1]^4*a[2]*b[1]+12*y^3*a[1]^3*b[1]^2*b[2]+12*y^3*a[1]^2*a[2]*b[1]^3+6*y^3*a[1]*b[1]^4*b[2]+6*y^3*a[2]*b[1]^5+18*x^2*y^2*a[1]^4+36*x^2*y^2*a[1]^2*b[1]^2+18*x^2*y^2*b[1]^4+18*x*y^2*a[1]^4*a[2]+18*x*y^2*a[1]^4*b[2]+36*x*y^2*a[1]^2*a[2]*b[1]^2+36*x*y^2*a[1]^2*b[1]^2*b[2]+18*x*y^2*a[2]*b[1]^4+18*x*y^2*b[1]^4*b[2]+18*y^2*a[1]^4*a[2]*b[2]+36*y^2*a[1]^2*a[2]*b[1]^2*b[2]+18*y^2*a[2]*b[1]^4*b[2]-5*delta*y^2*a[1]^4-8*delta*y^2*a[1]^3*b[1]-10*delta*y^2*a[1]^2*b[1]^2-8*delta*y^2*a[1]*b[1]^3-5*delta*y^2*b[1]^4+12*x^3*y*a[1]^3+12*x^3*y*a[1]^2*b[1]+12*x^3*y*a[1]*b[1]^2+12*x^3*y*b[1]^3+36*x^2*y*a[1]^3*a[2]+36*x^2*y*a[1]^2*b[1]*b[2]+36*x^2*y*a[1]*a[2]*b[1]^2+36*x^2*y*b[1]^3*b[2]+18*x*y*a[1]^3*a[2]^2+36*x*y*a[1]^3*a[2]*b[2]-18*x*y*a[1]^3*b[2]^2-18*x*y*a[1]^2*a[2]^2*b[1]+36*x*y*a[1]^2*a[2]*b[1]*b[2]+18*x*y*a[1]^2*b[1]*b[2]^2+18*x*y*a[1]*a[2]^2*b[1]^2+36*x*y*a[1]*a[2]*b[1]^2*b[2]-18*x*y*a[1]*b[1]^2*b[2]^2-18*x*y*a[2]^2*b[1]^3+36*x*y*a[2]*b[1]^3*b[2]+18*x*y*b[1]^3*b[2]^2+18*y*a[1]^3*a[2]^2*b[2]-6*y*a[1]^3*b[2]^3-6*y*a[1]^2*a[2]^3*b[1]+18*y*a[1]^2*a[2]*b[1]*b[2]^2+18*y*a[1]*a[2]^2*b[1]^2*b[2]-6*y*a[1]*b[1]^2*b[2]^3-6*y*a[2]^3*b[1]^3+18*y*a[2]*b[1]^3*b[2]^2-16*delta*x*y*a[1]^3-20*delta*x*y*a[1]^2*b[1]-20*delta*x*y*a[1]*b[1]^2-16*delta*x*y*b[1]^3-10*delta*y*a[1]^3*a[2]-6*delta*y*a[1]^3*b[2]-10*delta*y*a[1]^2*a[2]*b[1]-10*delta*y*a[1]^2*b[1]*b[2]-10*delta*y*a[1]*a[2]*b[1]^2-10*delta*y*a[1]*b[1]^2*b[2]-6*delta*y*a[2]*b[1]^3-10*delta*y*b[1]^3*b[2]+12*x^4*a[1]*b[1]+12*x^3*a[1]^2*a[2]-12*x^3*a[1]^2*b[2]+24*x^3*a[1]*a[2]*b[1]+24*x^3*a[1]*b[1]*b[2]-12*x^3*a[2]*b[1]^2+12*x^3*b[1]^2*b[2]+18*x^2*a[1]^2*a[2]^2-18*x^2*a[1]^2*b[2]^2+72*x^2*a[1]*a[2]*b[1]*b[2]-18*x^2*a[2]^2*b[1]^2+18*x^2*b[1]^2*b[2]^2+6*x*a[1]^2*a[2]^3+18*x*a[1]^2*a[2]^2*b[2]-18*x*a[1]^2*a[2]*b[2]^2-6*x*a[1]^2*b[2]^3-12*x*a[1]*a[2]^3*b[1]+36*x*a[1]*a[2]^2*b[1]*b[2]+36*x*a[1]*a[2]*b[1]*b[2]^2-12*x*a[1]*b[1]*b[2]^3-6*x*a[2]^3*b[1]^2-18*x*a[2]^2*b[1]^2*b[2]+18*x*a[2]*b[1]^2*b[2]^2+6*x*b[1]^2*b[2]^3+6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-10*delta*x^2*a[1]^2-16*delta*x^2*a[1]*b[1]-10*delta*x^2*b[1]^2-16*delta*x*a[1]^2*a[2]-4*delta*x*a[1]^2*b[2]-16*delta*x*a[1]*a[2]*b[1]-16*delta*x*a[1]*b[1]*b[2]-4*delta*x*a[2]*b[1]^2-16*delta*x*b[1]^2*b[2]-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*y^2*a[1]^2+48*y^2*a[1]*b[1]+16*y^2*b[1]^2+80*x*y*a[1]+80*x*y*b[1]+32*y*a[1]*a[2]+48*y*a[1]*b[2]+48*y*a[2]*b[1]+32*y*b[1]*b[2]+80*x^2+80*x*a[2]+80*x*b[2]+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta

 

6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta = 0

 

18*a[1]^3*a[2]^2*b[2]-6*a[1]^3*b[2]^3-6*a[1]^2*a[2]^3*b[1]+18*a[1]^2*a[2]*b[1]*b[2]^2+18*a[1]*a[2]^2*b[1]^2*b[2]-6*a[1]*b[1]^2*b[2]^3-6*a[2]^3*b[1]^3+18*a[2]*b[1]^3*b[2]^2-10*delta*a[1]^3*a[2]-6*delta*a[1]^3*b[2]-10*delta*a[1]^2*a[2]*b[1]-10*delta*a[1]^2*b[1]*b[2]-10*delta*a[1]*a[2]*b[1]^2-10*delta*a[1]*b[1]^2*b[2]-6*delta*a[2]*b[1]^3-10*delta*b[1]^3*b[2]+32*a[1]*a[2]+48*a[1]*b[2]+48*a[2]*b[1]+32*b[1]*b[2] = 0

 

18*a[1]^4*a[2]*b[2]+36*a[1]^2*a[2]*b[1]^2*b[2]+18*a[2]*b[1]^4*b[2]-5*delta*a[1]^4-8*delta*a[1]^3*b[1]-10*delta*a[1]^2*b[1]^2-8*delta*a[1]*b[1]^3-5*delta*b[1]^4+16*a[1]^2+48*a[1]*b[1]+16*b[1]^2 = 0

 

6*a[1]^5*b[2]+6*a[1]^4*a[2]*b[1]+12*a[1]^3*b[1]^2*b[2]+12*a[1]^2*a[2]*b[1]^3+6*a[1]*b[1]^4*b[2]+6*a[2]*b[1]^5 = 0

 

3*a[1]^5*b[1]+6*a[1]^3*b[1]^3+3*a[1]*b[1]^5 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

6*a[1]^2*a[2]^3+18*a[1]^2*a[2]^2*b[2]-18*a[1]^2*a[2]*b[2]^2-6*a[1]^2*b[2]^3-12*a[1]*a[2]^3*b[1]+36*a[1]*a[2]^2*b[1]*b[2]+36*a[1]*a[2]*b[1]*b[2]^2-12*a[1]*b[1]*b[2]^3-6*a[2]^3*b[1]^2-18*a[2]^2*b[1]^2*b[2]+18*a[2]*b[1]^2*b[2]^2+6*b[1]^2*b[2]^3-16*delta*a[1]^2*a[2]-4*delta*a[1]^2*b[2]-16*delta*a[1]*a[2]*b[1]-16*delta*a[1]*b[1]*b[2]-4*delta*a[2]*b[1]^2-16*delta*b[1]^2*b[2]+80*a[2]+80*b[2] = 0

 

18*a[1]^3*a[2]^2+36*a[1]^3*a[2]*b[2]-18*a[1]^3*b[2]^2-18*a[1]^2*a[2]^2*b[1]+36*a[1]^2*a[2]*b[1]*b[2]+18*a[1]^2*b[1]*b[2]^2+18*a[1]*a[2]^2*b[1]^2+36*a[1]*a[2]*b[1]^2*b[2]-18*a[1]*b[1]^2*b[2]^2-18*a[2]^2*b[1]^3+36*a[2]*b[1]^3*b[2]+18*b[1]^3*b[2]^2-16*delta*a[1]^3-20*delta*a[1]^2*b[1]-20*delta*a[1]*b[1]^2-16*delta*b[1]^3+80*a[1]+80*b[1] = 0

 

18*a[1]^4*a[2]+18*a[1]^4*b[2]+36*a[1]^2*a[2]*b[1]^2+36*a[1]^2*b[1]^2*b[2]+18*a[2]*b[1]^4+18*b[1]^4*b[2] = 0

 

6*a[1]^5+6*a[1]^4*b[1]+12*a[1]^3*b[1]^2+12*a[1]^2*b[1]^3+6*a[1]*b[1]^4+6*b[1]^5 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

18*a[1]^2*a[2]^2-18*a[1]^2*b[2]^2+72*a[1]*a[2]*b[1]*b[2]-18*a[2]^2*b[1]^2+18*b[1]^2*b[2]^2-10*delta*a[1]^2-16*delta*a[1]*b[1]-10*delta*b[1]^2+80 = 0

 

36*a[1]^3*a[2]+36*a[1]^2*b[1]*b[2]+36*a[1]*a[2]*b[1]^2+36*b[1]^3*b[2] = 0

 

18*a[1]^4+36*a[1]^2*b[1]^2+18*b[1]^4 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

12*a[1]^2*a[2]-12*a[1]^2*b[2]+24*a[1]*a[2]*b[1]+24*a[1]*b[1]*b[2]-12*a[2]*b[1]^2+12*b[1]^2*b[2] = 0

 

12*a[1]^3+12*a[1]^2*b[1]+12*a[1]*b[1]^2+12*b[1]^3 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

12*a[1]*b[1] = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

(1)
   
 

 


 

Download coefff.mw

Edit.

In the first equation there should be the multiplication sign after  x , otherwise everything that stands in parentheses (after  x)  disappears.
See:

x:=2:
x(h(t));
                               
 2

TM:=proc(N)
if N<2 then error "Should be N>=2" fi;
Matrix(N+1, [[seq(p[i],i=1..N-1),o[3]], [o[1],seq(q[i],i=1..N-1),o[4]], [o[2],seq(r[i],i=1..N-1)]], shape = band[1,1], scan=band[1,1]);
end proc:


Example of use:

TM(5);
                                

 

To multiply the matrices, I replaced  &*  with the dot  . . Now everything works.

Help_(3)_new.mw


Edit.

for this. 

Example:

plot([cos(t), sin(t), t=-1..1], x=0..2, y=-2..2, color=red, scaling=constrained);   # Or

plot([cos(t), sin(t), t=-1..1], color=red, scaling=constrained, view=[0..2,-2..2]); 
 


plot( x[3]^5, caption = typeset("\n A plot of %1.", x[3]^5), captionfont=[times, 20] );

First 115 116 117 118 119 120 121 Last Page 117 of 291