Kitonum

21455 Reputation

26 Badges

17 years, 47 days

MaplePrimes Activity


These are answers submitted by Kitonum

Since your parameters  N  and  m  each have 3 values, then there will be 3 * 3 = 9 all possible combinations. Therefore, you need nested loops to solve the system. But there is a new problem: Maple writes that there are too few boundary conditions:


 

``

``

w := .572433; x := 1.32156; y := 5.29387; z := .853043; b := -.1; pr := 6.2; m := [.5, 1, 1.5]; N := [10, 20, 30]; K := [black, red, green, blue, green, orange, gold, gray]; L := [solid, solid, solid, dash, solid, dot, dash]

for i to 3 do for j to 3 do sol1[i, j] := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+w*x*(f(eta)*(diff(diff(f(eta), eta), eta))-m[j]^2*(diff(f(eta), eta))-(diff(f(eta), eta))^2) = 0, y*(diff(diff(theta(eta), eta), eta))/(pr*z)-b*f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))-b*f(eta)^2*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta)) = 0, f(0) = N[i], (D(f))(0) = 1, (D(f))(20) = 0, theta(0) = 1, theta(20) = 0], numeric, method = bvp); fplt[i, j] := plots[odeplot](sol1[i, j], [eta, f(eta)], color = K[i], axes = boxed, linestyle = L[j]); tplt[i, j] := plots[odeplot](sol1[i, j], [eta, theta(eta)], color = K[i], axes = box, linestyle = L[j]) end do end do; plots:-display(seq(seq(fplt[i, j], i = 1 .. 3), j = 1 .. 3)); plots:-display(seq(seq(tplt[i, j], i = 1 .. 3), j = 1 .. 3))

Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 13, got 5

 

Error, (in plots:-display) expecting plot structure but received: fplt[1, 1]

 

Error, (in plots:-display) expecting plot structure but received: tplt[1, 1]

 

NULL

NULL


 

Download MHD_cchf_2_new.mw

You need to fill the space between the cube and the sphere with something, but so that it does not block the sphere. I suggest that you do this with red points using  plots:-pointplot3d command. Here are 2 options: in the first variant, the points fill the entire space between the cube and the sphere, in the second one - half of this space:

with(plottools): with(plots):
A:=sphere(color=pink, style=surface):
B1:=pointplot3d([seq(seq(seq(`if`(i^2+j^2+k^2>1,[i,j,k],NULL),i=-1..1,0.1),j=-1..1,0.1),k=-1..1,0.1)], color=red,symbolsize=12):
B2:=pointplot3d([seq(seq(seq(`if`(i^2+j^2+k^2>1  and i<=0,[i,j,k],NULL),i=-1..1,0.1),j=-1..1,0.1),k=-1..1,0.1)], color=red,symbolsize=12):
display(<display(A,B1) | display(A,B2)>);
       

Here are 2 options for plotting: the first 10 and the first 20 Fibonacci numbers. As the numbers increase rather quickly, on the second plot, the difference between the first 9 numbers is almost invisible:

seq(combinat:-fibonacci(n), n=1..20);
plot([seq([n,combinat:-fibonacci(n)], n=1..10)], style=point);
plot([seq([n,combinat:-fibonacci(n)], n=1..20)], style=point);

 

I made a few fixes in your code:

restart;
N:=4; alpha:=5*3.14/180; r:=10; Ha:=5; H:=1;
dsolve(diff(f(x),x,x,x));
Rf:=diff(f[m-1](x),x,x,x)+2*alpha*r*sum*(f[m-1-n](x)*diff(f[n](x),x),n=0..m-1)
+(4-Ha)*(alpha)^2*diff(f[m-1](x),x);
dsolve(diff(f[m](x),x,x,x)-CHI[m]*(diff(f[m-1](x),x,x,x))=h*H*Rf,f[m](x));
f[0](x):=1-x^2;
for m from 1 by 1 to N do
CHI[m]:=`if`(m>1,1,0);
f[m](x):=int(int(int(CHI[m]*(diff(f[m-1](x),x,x,x))+h*H(diff(f[m-1](x),x,x,x))
+2*h*H*alpha*r*(sum(f[m-1-n](x)*(diff(f[n](x),x)),n=0..m-1))+4*h*H*alpha^2*
(diff(f[m-1](x),x))-h*H*alpha^2*(diff(f[m-1](x),x))*Ha,x),x)+_C1*x,x)+_C2*x+_C3;
s1:=evalf(subs(x=0,f[m](x)))=0;
s2:=evalf(subs(x=0,diff(f[m](x),x)))=0;
s3:=evalf(subs(x=1,f[m](x)))=0;
s:={s1,s2,s3}:
f[m](x):=simplify(subs(solve(s,{_C1,_C2,_C3}),f[m](x)));
end do;
f(x):=sum(f[i](x),i=0..N);
hh:=evalf(subs(x=1,diff(f(x),x))):
plot(hh,h=-1.5..-0.2);
A(x):=subs(h=-0.9,f(x));
plot(A(x),x=0..1);

 

The  coeff  command does not work for extracting the coefficients of polynomials from several variables. A special procedure is required for this. The  coefff  procedure extracts the coefficient in front of a monomial  t of the polynomial  P  from the variables  T .
 

restart;
H1 := 3*y^4*a[1]^5*b[1]+6*y^4*a[1]^3*b[1]^3+3*y^4*a[1]*b[1]^5+6*x*y^3*a[1]^5+6*x*y^3*a[1]^4*b[1]+12*x*y^3*a[1]^3*b[1]^2+12*x*y^3*a[1]^2*b[1]^3+6*x*y^3*a[1]*b[1]^4+6*x*y^3*b[1]^5+6*y^3*a[1]^5*b[2]+6*y^3*a[1]^4*a[2]*b[1]+12*y^3*a[1]^3*b[1]^2*b[2]+12*y^3*a[1]^2*a[2]*b[1]^3+6*y^3*a[1]*b[1]^4*b[2]+6*y^3*a[2]*b[1]^5+18*x^2*y^2*a[1]^4+36*x^2*y^2*a[1]^2*b[1]^2+18*x^2*y^2*b[1]^4+18*x*y^2*a[1]^4*a[2]+18*x*y^2*a[1]^4*b[2]+36*x*y^2*a[1]^2*a[2]*b[1]^2+36*x*y^2*a[1]^2*b[1]^2*b[2]+18*x*y^2*a[2]*b[1]^4+18*x*y^2*b[1]^4*b[2]+18*y^2*a[1]^4*a[2]*b[2]+36*y^2*a[1]^2*a[2]*b[1]^2*b[2]+18*y^2*a[2]*b[1]^4*b[2]-5*delta*y^2*a[1]^4-8*delta*y^2*a[1]^3*b[1]-10*delta*y^2*a[1]^2*b[1]^2-8*delta*y^2*a[1]*b[1]^3-5*delta*y^2*b[1]^4+12*x^3*y*a[1]^3+12*x^3*y*a[1]^2*b[1]+12*x^3*y*a[1]*b[1]^2+12*x^3*y*b[1]^3+36*x^2*y*a[1]^3*a[2]+36*x^2*y*a[1]^2*b[1]*b[2]+36*x^2*y*a[1]*a[2]*b[1]^2+36*x^2*y*b[1]^3*b[2]+18*x*y*a[1]^3*a[2]^2+36*x*y*a[1]^3*a[2]*b[2]-18*x*y*a[1]^3*b[2]^2-18*x*y*a[1]^2*a[2]^2*b[1]+36*x*y*a[1]^2*a[2]*b[1]*b[2]+18*x*y*a[1]^2*b[1]*b[2]^2+18*x*y*a[1]*a[2]^2*b[1]^2+36*x*y*a[1]*a[2]*b[1]^2*b[2]-18*x*y*a[1]*b[1]^2*b[2]^2-18*x*y*a[2]^2*b[1]^3+36*x*y*a[2]*b[1]^3*b[2]+18*x*y*b[1]^3*b[2]^2+18*y*a[1]^3*a[2]^2*b[2]-6*y*a[1]^3*b[2]^3-6*y*a[1]^2*a[2]^3*b[1]+18*y*a[1]^2*a[2]*b[1]*b[2]^2+18*y*a[1]*a[2]^2*b[1]^2*b[2]-6*y*a[1]*b[1]^2*b[2]^3-6*y*a[2]^3*b[1]^3+18*y*a[2]*b[1]^3*b[2]^2-16*delta*x*y*a[1]^3-20*delta*x*y*a[1]^2*b[1]-20*delta*x*y*a[1]*b[1]^2-16*delta*x*y*b[1]^3-10*delta*y*a[1]^3*a[2]-6*delta*y*a[1]^3*b[2]-10*delta*y*a[1]^2*a[2]*b[1]-10*delta*y*a[1]^2*b[1]*b[2]-10*delta*y*a[1]*a[2]*b[1]^2-10*delta*y*a[1]*b[1]^2*b[2]-6*delta*y*a[2]*b[1]^3-10*delta*y*b[1]^3*b[2]+12*x^4*a[1]*b[1]+12*x^3*a[1]^2*a[2]-12*x^3*a[1]^2*b[2]+24*x^3*a[1]*a[2]*b[1]+24*x^3*a[1]*b[1]*b[2]-12*x^3*a[2]*b[1]^2+12*x^3*b[1]^2*b[2]+18*x^2*a[1]^2*a[2]^2-18*x^2*a[1]^2*b[2]^2+72*x^2*a[1]*a[2]*b[1]*b[2]-18*x^2*a[2]^2*b[1]^2+18*x^2*b[1]^2*b[2]^2+6*x*a[1]^2*a[2]^3+18*x*a[1]^2*a[2]^2*b[2]-18*x*a[1]^2*a[2]*b[2]^2-6*x*a[1]^2*b[2]^3-12*x*a[1]*a[2]^3*b[1]+36*x*a[1]*a[2]^2*b[1]*b[2]+36*x*a[1]*a[2]*b[1]*b[2]^2-12*x*a[1]*b[1]*b[2]^3-6*x*a[2]^3*b[1]^2-18*x*a[2]^2*b[1]^2*b[2]+18*x*a[2]*b[1]^2*b[2]^2+6*x*b[1]^2*b[2]^3+6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-10*delta*x^2*a[1]^2-16*delta*x^2*a[1]*b[1]-10*delta*x^2*b[1]^2-16*delta*x*a[1]^2*a[2]-4*delta*x*a[1]^2*b[2]-16*delta*x*a[1]*a[2]*b[1]-16*delta*x*a[1]*b[1]*b[2]-4*delta*x*a[2]*b[1]^2-16*delta*x*b[1]^2*b[2]-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*y^2*a[1]^2+48*y^2*a[1]*b[1]+16*y^2*b[1]^2+80*x*y*a[1]+80*x*y*b[1]+32*y*a[1]*a[2]+48*y*a[1]*b[2]+48*y*a[2]*b[1]+32*y*b[1]*b[2]+80*x^2+80*x*a[2]+80*x*b[2]+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta;

Equation := 12:
printlevel := 2:

coefff:=proc(P,T,t)
local L,H,i,k:
L:=[coeffs(P,T,'h')]: H:=[h]: k:=0:
for i from 1 to nops(H) do
if H[i]=t then k:=L[i] fi:
od:
k;
end proc:

for i from 0 to Equation do
for j from 0 to Equation do
C[i, j]:=coefff(H1, {x,y}, x^i*y^j) = 0;

end do;
end do;

3*y^4*a[1]^5*b[1]+6*y^4*a[1]^3*b[1]^3+3*y^4*a[1]*b[1]^5+6*x*y^3*a[1]^5+6*x*y^3*a[1]^4*b[1]+12*x*y^3*a[1]^3*b[1]^2+12*x*y^3*a[1]^2*b[1]^3+6*x*y^3*a[1]*b[1]^4+6*x*y^3*b[1]^5+6*y^3*a[1]^5*b[2]+6*y^3*a[1]^4*a[2]*b[1]+12*y^3*a[1]^3*b[1]^2*b[2]+12*y^3*a[1]^2*a[2]*b[1]^3+6*y^3*a[1]*b[1]^4*b[2]+6*y^3*a[2]*b[1]^5+18*x^2*y^2*a[1]^4+36*x^2*y^2*a[1]^2*b[1]^2+18*x^2*y^2*b[1]^4+18*x*y^2*a[1]^4*a[2]+18*x*y^2*a[1]^4*b[2]+36*x*y^2*a[1]^2*a[2]*b[1]^2+36*x*y^2*a[1]^2*b[1]^2*b[2]+18*x*y^2*a[2]*b[1]^4+18*x*y^2*b[1]^4*b[2]+18*y^2*a[1]^4*a[2]*b[2]+36*y^2*a[1]^2*a[2]*b[1]^2*b[2]+18*y^2*a[2]*b[1]^4*b[2]-5*delta*y^2*a[1]^4-8*delta*y^2*a[1]^3*b[1]-10*delta*y^2*a[1]^2*b[1]^2-8*delta*y^2*a[1]*b[1]^3-5*delta*y^2*b[1]^4+12*x^3*y*a[1]^3+12*x^3*y*a[1]^2*b[1]+12*x^3*y*a[1]*b[1]^2+12*x^3*y*b[1]^3+36*x^2*y*a[1]^3*a[2]+36*x^2*y*a[1]^2*b[1]*b[2]+36*x^2*y*a[1]*a[2]*b[1]^2+36*x^2*y*b[1]^3*b[2]+18*x*y*a[1]^3*a[2]^2+36*x*y*a[1]^3*a[2]*b[2]-18*x*y*a[1]^3*b[2]^2-18*x*y*a[1]^2*a[2]^2*b[1]+36*x*y*a[1]^2*a[2]*b[1]*b[2]+18*x*y*a[1]^2*b[1]*b[2]^2+18*x*y*a[1]*a[2]^2*b[1]^2+36*x*y*a[1]*a[2]*b[1]^2*b[2]-18*x*y*a[1]*b[1]^2*b[2]^2-18*x*y*a[2]^2*b[1]^3+36*x*y*a[2]*b[1]^3*b[2]+18*x*y*b[1]^3*b[2]^2+18*y*a[1]^3*a[2]^2*b[2]-6*y*a[1]^3*b[2]^3-6*y*a[1]^2*a[2]^3*b[1]+18*y*a[1]^2*a[2]*b[1]*b[2]^2+18*y*a[1]*a[2]^2*b[1]^2*b[2]-6*y*a[1]*b[1]^2*b[2]^3-6*y*a[2]^3*b[1]^3+18*y*a[2]*b[1]^3*b[2]^2-16*delta*x*y*a[1]^3-20*delta*x*y*a[1]^2*b[1]-20*delta*x*y*a[1]*b[1]^2-16*delta*x*y*b[1]^3-10*delta*y*a[1]^3*a[2]-6*delta*y*a[1]^3*b[2]-10*delta*y*a[1]^2*a[2]*b[1]-10*delta*y*a[1]^2*b[1]*b[2]-10*delta*y*a[1]*a[2]*b[1]^2-10*delta*y*a[1]*b[1]^2*b[2]-6*delta*y*a[2]*b[1]^3-10*delta*y*b[1]^3*b[2]+12*x^4*a[1]*b[1]+12*x^3*a[1]^2*a[2]-12*x^3*a[1]^2*b[2]+24*x^3*a[1]*a[2]*b[1]+24*x^3*a[1]*b[1]*b[2]-12*x^3*a[2]*b[1]^2+12*x^3*b[1]^2*b[2]+18*x^2*a[1]^2*a[2]^2-18*x^2*a[1]^2*b[2]^2+72*x^2*a[1]*a[2]*b[1]*b[2]-18*x^2*a[2]^2*b[1]^2+18*x^2*b[1]^2*b[2]^2+6*x*a[1]^2*a[2]^3+18*x*a[1]^2*a[2]^2*b[2]-18*x*a[1]^2*a[2]*b[2]^2-6*x*a[1]^2*b[2]^3-12*x*a[1]*a[2]^3*b[1]+36*x*a[1]*a[2]^2*b[1]*b[2]+36*x*a[1]*a[2]*b[1]*b[2]^2-12*x*a[1]*b[1]*b[2]^3-6*x*a[2]^3*b[1]^2-18*x*a[2]^2*b[1]^2*b[2]+18*x*a[2]*b[1]^2*b[2]^2+6*x*b[1]^2*b[2]^3+6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-10*delta*x^2*a[1]^2-16*delta*x^2*a[1]*b[1]-10*delta*x^2*b[1]^2-16*delta*x*a[1]^2*a[2]-4*delta*x*a[1]^2*b[2]-16*delta*x*a[1]*a[2]*b[1]-16*delta*x*a[1]*b[1]*b[2]-4*delta*x*a[2]*b[1]^2-16*delta*x*b[1]^2*b[2]-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*y^2*a[1]^2+48*y^2*a[1]*b[1]+16*y^2*b[1]^2+80*x*y*a[1]+80*x*y*b[1]+32*y*a[1]*a[2]+48*y*a[1]*b[2]+48*y*a[2]*b[1]+32*y*b[1]*b[2]+80*x^2+80*x*a[2]+80*x*b[2]+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta

 

6*a[1]^2*a[2]^3*b[2]-6*a[1]^2*a[2]*b[2]^3-3*a[1]*a[2]^4*b[1]+18*a[1]*a[2]^2*b[1]*b[2]^2-3*a[1]*b[1]*b[2]^4-6*a[2]^3*b[1]^2*b[2]+6*a[2]*b[1]^2*b[2]^3-5*delta*a[1]^2*a[2]^2-6*delta*a[1]^2*a[2]*b[2]+delta*a[1]^2*b[2]^2-2*delta*a[1]*a[2]^2*b[1]-12*delta*a[1]*a[2]*b[1]*b[2]-2*delta*a[1]*b[1]*b[2]^2+delta*a[2]^2*b[1]^2-6*delta*a[2]*b[1]^2*b[2]-5*delta*b[1]^2*b[2]^2+delta^2*a[1]^2+delta^2*a[1]*b[1]+delta^2*b[1]^2+16*a[2]^2+48*a[2]*b[2]+16*b[2]^2-8*delta = 0

 

18*a[1]^3*a[2]^2*b[2]-6*a[1]^3*b[2]^3-6*a[1]^2*a[2]^3*b[1]+18*a[1]^2*a[2]*b[1]*b[2]^2+18*a[1]*a[2]^2*b[1]^2*b[2]-6*a[1]*b[1]^2*b[2]^3-6*a[2]^3*b[1]^3+18*a[2]*b[1]^3*b[2]^2-10*delta*a[1]^3*a[2]-6*delta*a[1]^3*b[2]-10*delta*a[1]^2*a[2]*b[1]-10*delta*a[1]^2*b[1]*b[2]-10*delta*a[1]*a[2]*b[1]^2-10*delta*a[1]*b[1]^2*b[2]-6*delta*a[2]*b[1]^3-10*delta*b[1]^3*b[2]+32*a[1]*a[2]+48*a[1]*b[2]+48*a[2]*b[1]+32*b[1]*b[2] = 0

 

18*a[1]^4*a[2]*b[2]+36*a[1]^2*a[2]*b[1]^2*b[2]+18*a[2]*b[1]^4*b[2]-5*delta*a[1]^4-8*delta*a[1]^3*b[1]-10*delta*a[1]^2*b[1]^2-8*delta*a[1]*b[1]^3-5*delta*b[1]^4+16*a[1]^2+48*a[1]*b[1]+16*b[1]^2 = 0

 

6*a[1]^5*b[2]+6*a[1]^4*a[2]*b[1]+12*a[1]^3*b[1]^2*b[2]+12*a[1]^2*a[2]*b[1]^3+6*a[1]*b[1]^4*b[2]+6*a[2]*b[1]^5 = 0

 

3*a[1]^5*b[1]+6*a[1]^3*b[1]^3+3*a[1]*b[1]^5 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

6*a[1]^2*a[2]^3+18*a[1]^2*a[2]^2*b[2]-18*a[1]^2*a[2]*b[2]^2-6*a[1]^2*b[2]^3-12*a[1]*a[2]^3*b[1]+36*a[1]*a[2]^2*b[1]*b[2]+36*a[1]*a[2]*b[1]*b[2]^2-12*a[1]*b[1]*b[2]^3-6*a[2]^3*b[1]^2-18*a[2]^2*b[1]^2*b[2]+18*a[2]*b[1]^2*b[2]^2+6*b[1]^2*b[2]^3-16*delta*a[1]^2*a[2]-4*delta*a[1]^2*b[2]-16*delta*a[1]*a[2]*b[1]-16*delta*a[1]*b[1]*b[2]-4*delta*a[2]*b[1]^2-16*delta*b[1]^2*b[2]+80*a[2]+80*b[2] = 0

 

18*a[1]^3*a[2]^2+36*a[1]^3*a[2]*b[2]-18*a[1]^3*b[2]^2-18*a[1]^2*a[2]^2*b[1]+36*a[1]^2*a[2]*b[1]*b[2]+18*a[1]^2*b[1]*b[2]^2+18*a[1]*a[2]^2*b[1]^2+36*a[1]*a[2]*b[1]^2*b[2]-18*a[1]*b[1]^2*b[2]^2-18*a[2]^2*b[1]^3+36*a[2]*b[1]^3*b[2]+18*b[1]^3*b[2]^2-16*delta*a[1]^3-20*delta*a[1]^2*b[1]-20*delta*a[1]*b[1]^2-16*delta*b[1]^3+80*a[1]+80*b[1] = 0

 

18*a[1]^4*a[2]+18*a[1]^4*b[2]+36*a[1]^2*a[2]*b[1]^2+36*a[1]^2*b[1]^2*b[2]+18*a[2]*b[1]^4+18*b[1]^4*b[2] = 0

 

6*a[1]^5+6*a[1]^4*b[1]+12*a[1]^3*b[1]^2+12*a[1]^2*b[1]^3+6*a[1]*b[1]^4+6*b[1]^5 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

18*a[1]^2*a[2]^2-18*a[1]^2*b[2]^2+72*a[1]*a[2]*b[1]*b[2]-18*a[2]^2*b[1]^2+18*b[1]^2*b[2]^2-10*delta*a[1]^2-16*delta*a[1]*b[1]-10*delta*b[1]^2+80 = 0

 

36*a[1]^3*a[2]+36*a[1]^2*b[1]*b[2]+36*a[1]*a[2]*b[1]^2+36*b[1]^3*b[2] = 0

 

18*a[1]^4+36*a[1]^2*b[1]^2+18*b[1]^4 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

12*a[1]^2*a[2]-12*a[1]^2*b[2]+24*a[1]*a[2]*b[1]+24*a[1]*b[1]*b[2]-12*a[2]*b[1]^2+12*b[1]^2*b[2] = 0

 

12*a[1]^3+12*a[1]^2*b[1]+12*a[1]*b[1]^2+12*b[1]^3 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

12*a[1]*b[1] = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

 

0 = 0

(1)
   
 

 


 

Download coefff.mw

Edit.

In the first equation there should be the multiplication sign after  x , otherwise everything that stands in parentheses (after  x)  disappears.
See:

x:=2:
x(h(t));
                               
 2

TM:=proc(N)
if N<2 then error "Should be N>=2" fi;
Matrix(N+1, [[seq(p[i],i=1..N-1),o[3]], [o[1],seq(q[i],i=1..N-1),o[4]], [o[2],seq(r[i],i=1..N-1)]], shape = band[1,1], scan=band[1,1]);
end proc:


Example of use:

TM(5);
                                

 

To multiply the matrices, I replaced  &*  with the dot  . . Now everything works.

Help_(3)_new.mw


Edit.

for this. 

Example:

plot([cos(t), sin(t), t=-1..1], x=0..2, y=-2..2, color=red, scaling=constrained);   # Or

plot([cos(t), sin(t), t=-1..1], color=red, scaling=constrained, view=[0..2,-2..2]); 
 


plot( x[3]^5, caption = typeset("\n A plot of %1.", x[3]^5), captionfont=[times, 20] );

We use the classical method of finding critical points and their subsequent investigation with the help of the second derivative. Maple returns the results in thу range  -Pi .. Pi . If you want the results to be in the range  0..2*Pi , just add  2*Pi  to the corresponding variable:  

restart;
f:=(x,y)->1+8*cos(1/2*x-1/2*y)*cos(1/2*x)*cos(1/2*y);
[solve({D[1](f)(x,y)=0, D[2](f)(x,y)=0},explicit)];
S:=[seq([Student:-MultivariateCalculus:-SecondDerivativeTest(f(x,y),[x,y]=eval([x,y],%[i]))], i=1..nops(%))];
select(s->s[1]<>(LocalMin = []), S);


The final results:

    

 

with(plots):
K:=9;
deG:=diff(theta(t),t,t) + mu*diff(theta(t),t)+K*sin(theta(t))= 0;
deL:=diff(theta(t),t,t) + mu*diff(theta(t),t)+K*theta(t)= 0;
Iv:=theta(0)=0.75, D(theta)(0)=2.0;
dom1:=t=0..10;
soln1a:=dsolve({eval(deL,mu=0),Iv});
gr1a:=plot(eval(theta(t), soln1a), dom1, color=blue);
 

Your system, in addition to the unknown, contains several parameters. You can obtain explicit solutions depending on the values of these parameters as follows:


 

restart; Q1 := x*(x-delta)*(1-x)*(x+y)-alpha*x*y; Q2 := beta*x*y-Zeta*y*(x+y); SOLL := solve({Q1, Q2}, {x, y}, parametric = full); SOLL1 := map(allvalues, %)

SOLL := piecewise(beta = 0, piecewise(delta = 0, [{x = 0, y = 0}, {x = 1, y = 0}], delta-1 = 0, [{x = 0, y = 0}, {x = 1, y = 0}], delta <> 0 and delta-1 <> 0, [{x = delta, y = 0}, {x = 0, y = 0}, {x = 1, y = 0}]), delta = 0, piecewise(beta = 0, [{x = 0, y = 0}, {x = 1, y = 0}], beta <> 0, [{x = RootOf(_Z^2*beta-Zeta*alpha-_Z*beta+alpha*beta), y = -RootOf(_Z^2*beta-Zeta*alpha-_Z*beta+alpha*beta)*(Zeta-beta)/Zeta}, {x = 0, y = 0}, {x = 1, y = 0}]), delta-1 = 0, piecewise(beta = 0, [{x = 0, y = 0}, {x = 1, y = 0}], beta <> 0, [{x = RootOf(_Z^2*beta-Zeta*alpha-2*_Z*beta+alpha*beta+beta), y = -RootOf(_Z^2*beta-Zeta*alpha-2*_Z*beta+alpha*beta+beta)*(Zeta-beta)/Zeta}, {x = 0, y = 0}, {x = 1, y = 0}]), beta <> 0 and delta <> 0 and delta-1 <> 0, [{x = delta, y = 0}, {x = RootOf(beta*_Z^2+(-beta*delta-beta)*_Z-Zeta*alpha+alpha*beta+beta*delta), y = -RootOf(beta*_Z^2+(-beta*delta-beta)*_Z-Zeta*alpha+alpha*beta+beta*delta)*(Zeta-beta)/Zeta}, {x = 0, y = 0}, {x = 1, y = 0}])

 

piecewise(beta = 0, piecewise(delta = 0, [{x = 0, y = 0}, {x = 1, y = 0}], delta-1 = 0, [{x = 0, y = 0}, {x = 1, y = 0}], And(delta <> 0, delta-1 <> 0), [{x = delta, y = 0}, {x = 0, y = 0}, {x = 1, y = 0}]), delta = 0, piecewise(beta = 0, [{x = 0, y = 0}, {x = 1, y = 0}], beta <> 0, [{x = (1/2)*(beta+(4*Zeta*alpha*beta-4*alpha*beta^2+beta^2)^(1/2))/beta, y = -(1/2)*(beta+(4*Zeta*alpha*beta-4*alpha*beta^2+beta^2)^(1/2))*(Zeta-beta)/(beta*Zeta)}, {x = 0, y = 0}, {x = 1, y = 0}]), piecewise(beta = 0, [{x = 0, y = 0}, {x = 1, y = 0}], beta <> 0, [{x = -(1/2)*(-beta+(4*Zeta*alpha*beta-4*alpha*beta^2+beta^2)^(1/2))/beta, y = (1/2)*(-beta+(4*Zeta*alpha*beta-4*alpha*beta^2+beta^2)^(1/2))*(Zeta-beta)/(beta*Zeta)}, {x = 0, y = 0}, {x = 1, y = 0}]), delta-1 = 0, piecewise(beta = 0, [{x = 0, y = 0}, {x = 1, y = 0}], beta <> 0, [{x = (beta+(Zeta*alpha*beta-alpha*beta^2)^(1/2))/beta, y = -(beta+(Zeta*alpha*beta-alpha*beta^2)^(1/2))*(Zeta-beta)/(beta*Zeta)}, {x = 0, y = 0}, {x = 1, y = 0}]), piecewise(beta = 0, [{x = 0, y = 0}, {x = 1, y = 0}], beta <> 0, [{x = -(-beta+(Zeta*alpha*beta-alpha*beta^2)^(1/2))/beta, y = (-beta+(Zeta*alpha*beta-alpha*beta^2)^(1/2))*(Zeta-beta)/(beta*Zeta)}, {x = 0, y = 0}, {x = 1, y = 0}]), And(beta <> 0, delta <> 0, delta-1 <> 0), [{x = delta, y = 0}, {x = (1/2)*(beta*delta+beta+(beta^2*delta^2+4*Zeta*alpha*beta-4*alpha*beta^2-2*beta^2*delta+beta^2)^(1/2))/beta, y = -(1/2)*(beta*delta+beta+(beta^2*delta^2+4*Zeta*alpha*beta-4*alpha*beta^2-2*beta^2*delta+beta^2)^(1/2))*(Zeta-beta)/(beta*Zeta)}, {x = 0, y = 0}, {x = 1, y = 0}], [{x = delta, y = 0}, {x = -(1/2)*(-beta*delta+(beta^2*delta^2+4*Zeta*alpha*beta-4*alpha*beta^2-2*beta^2*delta+beta^2)^(1/2)-beta)/beta, y = (1/2)*(-beta*delta+(beta^2*delta^2+4*Zeta*alpha*beta-4*alpha*beta^2-2*beta^2*delta+beta^2)^(1/2)-beta)*(Zeta-beta)/(beta*Zeta)}, {x = 0, y = 0}, {x = 1, y = 0}])

(1)

``


 

Download System_with_parameters.mw

x^2:
f:=unapply(%, x);
f(t);
f(3);

We can find all 3 solutions as follows:

restart;
z:=x+I*y:
evalc(abs(z)*(z-4-I)+2*I = (5-I)*z);
solve({Re(lhs(%))=Re(rhs(%)), Im(lhs(%))=Im(rhs(%))}) assuming real;
evalf(%);
                     

 

Edit. I do not know why  solve  (as OP did) fails with this example. Probably this should be seen as a bug.

First 114 115 116 117 118 119 120 Last Page 116 of 290