Kitonum

21455 Reputation

26 Badges

17 years, 47 days

MaplePrimes Activity


These are answers submitted by Kitonum

We can easily prove by hand even an more general result, that for any number of roots in the first term (starting from 2) the limit is 1/2.
We denote by  a[n]  the expression with  n  roots. For example  a[3]=sqrt(x+sqrt(x+sqrt(x)))

It's obvious that  for any  n>=2  we have   
a[n]=sqrt(x+a[n-1]) limit(a[n]/sqrt(x), x=infinity)=1,  limit(a[n]/x, x=infinity)=0

Below we prove that for any  n>=2  the result holds  limit(a[n]-sqrt(x), x=infinity) = 1/2 

We denote  A=sqrt(x+a[n-1]) - sqrt(x) ,  B=sqrt(x+a[n-1]) + sqrt(x)

For the proof, it is sufficient to make only 3 steps: multiply and divide   by  , simplify in the numerator using the difference formula for the squares, and then divide the numerator and the denominator by  sqrt(x)  (below is an illustration of these steps in Maple) :

restart;
A:=sqrt(x+a[n-1])-sqrt(x);
B:=sqrt(x+a[n-1])+sqrt(x);
C:=expand(A*B)/B;
``(expand(combine(numer(C)/sqrt(x))))/map(p->expand(combine(p/sqrt(x))),denom(C)) assuming x>0;
                               
 

Using the above limits, we get the result  1/2 


For those who want to check the result in Maple (without any steps) , here's a procedure that allows you to automatically generate the expression  a[n]  for any  :

restart;
a:=proc(n)
if n=1 then return sqrt(x) else
sqrt(x+a(n-1)) fi;
end proc:

Examples of use:

seq(a(n), n=[1,4,10]);

   

The answer is very simple - your inequality in addition to the basic unknown  r  contains several parameters  (lambda, M) and Maple simply does not know how to solve such inequalities.

Here is a much simpler example that Maple also refuses to solve:

solve(sqrt(a*x+1) < 1, x);
     Warning, solutions may have been lost


This simple example, we can still solve, if to use  assuming  option:

solve(sqrt(a*x+1) < 1, x) assuming a>0;
solve(sqrt(a*x+1) < 1, x) assuming a<0;


But for your inequality and it does not help.

I think first you need to specify the values of the parameters  lambda  and  .



 

See  ?plot,axis  help page for this.

Do you just want to check that a number  a  is the root of your equation? In this case, do 

simplify(eval(F(X)=0, X=a));

Sometimes other commands are required instead of  simplify . Then specify the exact form of your equation and the value of .
 

restart;
with(Physics):
Setup(mathematicalnotation = true);                
Setup(signature = `+---`);
ds2 := ((x^2-y^2)*cos(2*u)+2*x*y*sin(2*u))*(du^2)-2*x*(dv^2)-dx^2-dy^2;
Setup(coordinatesystems=(Z=[u, v, x, y]), metric = ds2);

 

Edit.

[{1, 2}, {2, 3}] minus~ [{2}$2];
                                                   
  [{1}, {3}]

A more traditional and programmatic way of obtaining the values of a function obtained as a result of solving an equation, etc., is to use  eval  command. See the same example as tomleslie's one:


 

restart;
PDE := diff(u(x,t),t)=-diff(u(x,t),x);
  IBC := {u(x,0)=sin(2*Pi*x),u(0,t)=-sin(2*Pi*t)};
  pds := pdsolve(PDE,IBC,numeric,time=t,range=0..1);

diff(u(x, t), t) = -(diff(u(x, t), x))

 

{u(0, t) = -sin(2*Pi*t), u(x, 0) = sin(2*Pi*x)}

 

_m2382342501312

(1)


f:=(x0,t0)->eval(u(x,t),pds:-value(t=t0)(x0));
f(0.7,0.5);  # Example of the calculation of a value of u(x,t)
evalf(Int(x->f(x,0.1), 0.25..0.75));  # Example of the calculation of an integral of u(x,t)

proc (x0, t0) options operator, arrow; eval(u(x, t), (pds:-value(t = t0))(x0)) end proc

 

HFloat(0.9510565162951535)

 

HFloat(0.18707013161493055)

(2)

 


 

Download eval.mw

ode:= diff(y(x),x)=2*x:
plots:-display(DEtools:-DEplot(ode,y(x),x = -2 .. 2,y = -2 .. 2, [[0.1,0]],
               labels=["",""],
               linecolour = red,
               color = blue,
               'arrows' = 'medium',
               axesfont=['Times', 'bold', 12]
               ), axis=[tickmarks=[color=red]]);

For your first example, everything is the same:

restart;
plots:-display(plot(sin(x),x=-Pi..Pi, color=blue),axis=[tickmarks=[color=red]]);
 

Here is an example of solving the problem. The method is of a general nature and can be used for any curves given by parametric equations. In the example, the red curve is a broken line, and the blue one is a straight line.

restart;
d:=(P,Q)->sqrt((P[1]-Q[1])^2+(P[2]-Q[2])^2);
P:=piecewise(s>=0 and s<0.3,[s,s/3+0.3],s>=0.3 and s<0.5,[s,-s+0.7],s>=0.5 and s<0.7,[s,7/2*s-1.55],s>=0.7 and s<=1,[s,-s/3+17/15]);
Q:=[t,t];
A:=plot(piecewise(seq(op([op(P)[2*n-1],op(P)[2*n][2]]), n=1..nops([op(P)])/2)), s=0..1,color=red, thickness=3):
B:=plot(t, t=0..1, color=blue, thickness=3):
epsilon:=0.3;
C:=plots:-inequal({d(P,Q)<=epsilon}, s=0..1, t=0..1, optionsfeasible = [color = "WhiteSmoke"], optionsexcluded = [color = "DarkGrey"], view=[0..1,0..1]):
plots:-display(<plots:-display(A,B) | C>, scaling=constrained); # This is "free space diagram"

If the curve is given by a conventional equation, for example  y=f(x) , so you must specify it as the list  [x, f(x)]

FD.mw

Edit.

Try  
A.C;
  # dot product 
# or  
expand(A.C); 

Type this ( ) as an ordinary dot on the keyboard. I use 1d-math input. In 2d-math input (which you use) , this will look like a fat dot in the middle.

For real domain use  discont  command instead of  singular  (the output is empty set):

discont(ln(y^2+1), y);
                                         
 { }

You are not right. Maple calculates everything correctly. Should be

combinat:-numbcomb(n, m) = binomial(n, m)  

See help on this command.

For example  combinat:-numbcomb(7, 3) = (7*6*5)/3! = 35

The mapping of the square  [0,1] x [0,1]  with 2d-grid:

restart;
f:=(r,t)->[r*exp(t),r*exp(-t)];
S:=plot([seq([x,t,t=0..1],x=0..1,0.1),seq([t,y,t=0..1],y=0..1,0.1)], color=red, size=[200,200]):
F:=plottools:-transform(f):
T:=plots:-display(F(S), size=[400,400]):
plots:-display(<S | T>, scaling=constrained);


                       

Edit.
                        

 


 

Try use inert multiplication for this:

A:=x%*y=y%*x + 2*z;
expand(subs(A, w*x%*y));
                              

 

 

First 112 113 114 115 116 117 118 Last Page 114 of 290