Kitonum

21670 Reputation

26 Badges

17 years, 183 days

MaplePrimes Activity


These are answers submitted by Kitonum

Suppose you want to write the following expression  Expr  in powers of  x-1 . You can do it like this:

restart;
Expr:=x^2-3*x+5:
eval(Expr, x=y+1);
subs(y=``(x-1),expand(%)); # Desired form
expand(%); # Check

(y+1)^2-3*y+2

 

``(x-1)^2-``(x-1)+3

 

x^2-3*x+5

(1)

 


Download way.mw

Since the curve  f(x)  is symmetrical about the Oy axis, the circle must also be symmetrical about the Oy axis and touch the lower branch in the point  (0,-1) . So the upper semicircle will be  y=sqrt(R^2-x^2)+R-1 . In general, we have 5 points of intersection. If we impose the condition  R^2-2*R = 0 , then we have 3 points of intersection:

 

 

restart;
solve(sqrt(R^2-x^2)+R-1=(x^2+1)/(x^2-1), x);
R:=solve(R^2-2*R=0)[2];
plots:-display(plot((x^2+1)/(x^2-1), x=-4..4, -4..4, color=blue), plots:-implicitplot(x^2+(y-(R-1))^2=R^2, x=-4..4, y=-4..4, color=red));

0, (2*R-1+2*(R^2-2*R)^(1/2))^(1/2), -(2*R-1+2*(R^2-2*R)^(1/2))^(1/2), (2*R-1-2*(R^2-2*R)^(1/2))^(1/2), -(2*R-1-2*(R^2-2*R)^(1/2))^(1/2)

 

2

 

 

 

Download Tan.mw


 

restart; A := [seq(i, i = 1 .. 20)]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

(1)

B := [seq(i, i = 1 .. 20)]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

(2)

solution := Pi^2*(theta1*a^4+(2*(theta2+2*theta3))*a^2*b^2+theta4*b^4)/(h^2*(a^2+b^2))

L := [seq(seq([[a, b], solution], `in`(a, A)), `in`(b, B))]

[[[1, 1], (1/2)*Pi^2*(theta1+2*theta2+4*theta3+theta4)/h^2], [[2, 1], (1/5)*Pi^2*(16*theta1+8*theta2+16*theta3+theta4)/h^2], [[3, 1], (1/10)*Pi^2*(81*theta1+18*theta2+36*theta3+theta4)/h^2], [[4, 1], (1/17)*Pi^2*(256*theta1+32*theta2+64*theta3+theta4)/h^2], [[5, 1], (1/26)*Pi^2*(625*theta1+50*theta2+100*theta3+theta4)/h^2], [[6, 1], (1/37)*Pi^2*(1296*theta1+72*theta2+144*theta3+theta4)/h^2], [[7, 1], (1/50)*Pi^2*(2401*theta1+98*theta2+196*theta3+theta4)/h^2], [[8, 1], (1/65)*Pi^2*(4096*theta1+128*theta2+256*theta3+theta4)/h^2], [[9, 1], (1/82)*Pi^2*(6561*theta1+162*theta2+324*theta3+theta4)/h^2], [[10, 1], (1/101)*Pi^2*(10000*theta1+200*theta2+400*theta3+theta4)/h^2], [[11, 1], (1/122)*Pi^2*(14641*theta1+242*theta2+484*theta3+theta4)/h^2], [[12, 1], (1/145)*Pi^2*(20736*theta1+288*theta2+576*theta3+theta4)/h^2], [[13, 1], (1/170)*Pi^2*(28561*theta1+338*theta2+676*theta3+theta4)/h^2], [[14, 1], (1/197)*Pi^2*(38416*theta1+392*theta2+784*theta3+theta4)/h^2], [[15, 1], (1/226)*Pi^2*(50625*theta1+450*theta2+900*theta3+theta4)/h^2], [[16, 1], (1/257)*Pi^2*(65536*theta1+512*theta2+1024*theta3+theta4)/h^2], [[17, 1], (1/290)*Pi^2*(83521*theta1+578*theta2+1156*theta3+theta4)/h^2], [[18, 1], (1/325)*Pi^2*(104976*theta1+648*theta2+1296*theta3+theta4)/h^2], [[19, 1], (1/362)*Pi^2*(130321*theta1+722*theta2+1444*theta3+theta4)/h^2], [[20, 1], (1/401)*Pi^2*(160000*theta1+800*theta2+1600*theta3+theta4)/h^2], [[1, 2], (1/5)*Pi^2*(theta1+8*theta2+16*theta3+16*theta4)/h^2], [[2, 2], (1/8)*Pi^2*(16*theta1+32*theta2+64*theta3+16*theta4)/h^2], [[3, 2], (1/13)*Pi^2*(81*theta1+72*theta2+144*theta3+16*theta4)/h^2], [[4, 2], (1/20)*Pi^2*(256*theta1+128*theta2+256*theta3+16*theta4)/h^2], [[5, 2], (1/29)*Pi^2*(625*theta1+200*theta2+400*theta3+16*theta4)/h^2], [[6, 2], (1/40)*Pi^2*(1296*theta1+288*theta2+576*theta3+16*theta4)/h^2], [[7, 2], (1/53)*Pi^2*(2401*theta1+392*theta2+784*theta3+16*theta4)/h^2], [[8, 2], (1/68)*Pi^2*(4096*theta1+512*theta2+1024*theta3+16*theta4)/h^2], [[9, 2], (1/85)*Pi^2*(6561*theta1+648*theta2+1296*theta3+16*theta4)/h^2], [[10, 2], (1/104)*Pi^2*(10000*theta1+800*theta2+1600*theta3+16*theta4)/h^2], [[11, 2], (1/125)*Pi^2*(14641*theta1+968*theta2+1936*theta3+16*theta4)/h^2], [[12, 2], (1/148)*Pi^2*(20736*theta1+1152*theta2+2304*theta3+16*theta4)/h^2], [[13, 2], (1/173)*Pi^2*(28561*theta1+1352*theta2+2704*theta3+16*theta4)/h^2], [[14, 2], (1/200)*Pi^2*(38416*theta1+1568*theta2+3136*theta3+16*theta4)/h^2], [[15, 2], (1/229)*Pi^2*(50625*theta1+1800*theta2+3600*theta3+16*theta4)/h^2], [[16, 2], (1/260)*Pi^2*(65536*theta1+2048*theta2+4096*theta3+16*theta4)/h^2], [[17, 2], (1/293)*Pi^2*(83521*theta1+2312*theta2+4624*theta3+16*theta4)/h^2], [[18, 2], (1/328)*Pi^2*(104976*theta1+2592*theta2+5184*theta3+16*theta4)/h^2], [[19, 2], (1/365)*Pi^2*(130321*theta1+2888*theta2+5776*theta3+16*theta4)/h^2], [[20, 2], (1/404)*Pi^2*(160000*theta1+3200*theta2+6400*theta3+16*theta4)/h^2], [[1, 3], (1/10)*Pi^2*(theta1+18*theta2+36*theta3+81*theta4)/h^2], [[2, 3], (1/13)*Pi^2*(16*theta1+72*theta2+144*theta3+81*theta4)/h^2], [[3, 3], (1/18)*Pi^2*(81*theta1+162*theta2+324*theta3+81*theta4)/h^2], [[4, 3], (1/25)*Pi^2*(256*theta1+288*theta2+576*theta3+81*theta4)/h^2], [[5, 3], (1/34)*Pi^2*(625*theta1+450*theta2+900*theta3+81*theta4)/h^2], [[6, 3], (1/45)*Pi^2*(1296*theta1+648*theta2+1296*theta3+81*theta4)/h^2], [[7, 3], (1/58)*Pi^2*(2401*theta1+882*theta2+1764*theta3+81*theta4)/h^2], [[8, 3], (1/73)*Pi^2*(4096*theta1+1152*theta2+2304*theta3+81*theta4)/h^2], [[9, 3], (1/90)*Pi^2*(6561*theta1+1458*theta2+2916*theta3+81*theta4)/h^2], [[10, 3], (1/109)*Pi^2*(10000*theta1+1800*theta2+3600*theta3+81*theta4)/h^2], [[11, 3], (1/130)*Pi^2*(14641*theta1+2178*theta2+4356*theta3+81*theta4)/h^2], [[12, 3], (1/153)*Pi^2*(20736*theta1+2592*theta2+5184*theta3+81*theta4)/h^2], [[13, 3], (1/178)*Pi^2*(28561*theta1+3042*theta2+6084*theta3+81*theta4)/h^2], [[14, 3], (1/205)*Pi^2*(38416*theta1+3528*theta2+7056*theta3+81*theta4)/h^2], [[15, 3], (1/234)*Pi^2*(50625*theta1+4050*theta2+8100*theta3+81*theta4)/h^2], [[16, 3], (1/265)*Pi^2*(65536*theta1+4608*theta2+9216*theta3+81*theta4)/h^2], [[17, 3], (1/298)*Pi^2*(83521*theta1+5202*theta2+10404*theta3+81*theta4)/h^2], [[18, 3], (1/333)*Pi^2*(104976*theta1+5832*theta2+11664*theta3+81*theta4)/h^2], [[19, 3], (1/370)*Pi^2*(130321*theta1+6498*theta2+12996*theta3+81*theta4)/h^2], [[20, 3], (1/409)*Pi^2*(160000*theta1+7200*theta2+14400*theta3+81*theta4)/h^2], [[1, 4], (1/17)*Pi^2*(theta1+32*theta2+64*theta3+256*theta4)/h^2], [[2, 4], (1/20)*Pi^2*(16*theta1+128*theta2+256*theta3+256*theta4)/h^2], [[3, 4], (1/25)*Pi^2*(81*theta1+288*theta2+576*theta3+256*theta4)/h^2], [[4, 4], (1/32)*Pi^2*(256*theta1+512*theta2+1024*theta3+256*theta4)/h^2], [[5, 4], (1/41)*Pi^2*(625*theta1+800*theta2+1600*theta3+256*theta4)/h^2], [[6, 4], (1/52)*Pi^2*(1296*theta1+1152*theta2+2304*theta3+256*theta4)/h^2], [[7, 4], (1/65)*Pi^2*(2401*theta1+1568*theta2+3136*theta3+256*theta4)/h^2], [[8, 4], (1/80)*Pi^2*(4096*theta1+2048*theta2+4096*theta3+256*theta4)/h^2], [[9, 4], (1/97)*Pi^2*(6561*theta1+2592*theta2+5184*theta3+256*theta4)/h^2], [[10, 4], (1/116)*Pi^2*(10000*theta1+3200*theta2+6400*theta3+256*theta4)/h^2], [[11, 4], (1/137)*Pi^2*(14641*theta1+3872*theta2+7744*theta3+256*theta4)/h^2], [[12, 4], (1/160)*Pi^2*(20736*theta1+4608*theta2+9216*theta3+256*theta4)/h^2], [[13, 4], (1/185)*Pi^2*(28561*theta1+5408*theta2+10816*theta3+256*theta4)/h^2], [[14, 4], (1/212)*Pi^2*(38416*theta1+6272*theta2+12544*theta3+256*theta4)/h^2], [[15, 4], (1/241)*Pi^2*(50625*theta1+7200*theta2+14400*theta3+256*theta4)/h^2], [[16, 4], (1/272)*Pi^2*(65536*theta1+8192*theta2+16384*theta3+256*theta4)/h^2], [[17, 4], (1/305)*Pi^2*(83521*theta1+9248*theta2+18496*theta3+256*theta4)/h^2], [[18, 4], (1/340)*Pi^2*(104976*theta1+10368*theta2+20736*theta3+256*theta4)/h^2], [[19, 4], (1/377)*Pi^2*(130321*theta1+11552*theta2+23104*theta3+256*theta4)/h^2], [[20, 4], (1/416)*Pi^2*(160000*theta1+12800*theta2+25600*theta3+256*theta4)/h^2], [[1, 5], (1/26)*Pi^2*(theta1+50*theta2+100*theta3+625*theta4)/h^2], [[2, 5], (1/29)*Pi^2*(16*theta1+200*theta2+400*theta3+625*theta4)/h^2], [[3, 5], (1/34)*Pi^2*(81*theta1+450*theta2+900*theta3+625*theta4)/h^2], [[4, 5], (1/41)*Pi^2*(256*theta1+800*theta2+1600*theta3+625*theta4)/h^2], [[5, 5], (1/50)*Pi^2*(625*theta1+1250*theta2+2500*theta3+625*theta4)/h^2], [[6, 5], (1/61)*Pi^2*(1296*theta1+1800*theta2+3600*theta3+625*theta4)/h^2], [[7, 5], (1/74)*Pi^2*(2401*theta1+2450*theta2+4900*theta3+625*theta4)/h^2], [[8, 5], (1/89)*Pi^2*(4096*theta1+3200*theta2+6400*theta3+625*theta4)/h^2], [[9, 5], (1/106)*Pi^2*(6561*theta1+4050*theta2+8100*theta3+625*theta4)/h^2], [[10, 5], (1/125)*Pi^2*(10000*theta1+5000*theta2+10000*theta3+625*theta4)/h^2], [[11, 5], (1/146)*Pi^2*(14641*theta1+6050*theta2+12100*theta3+625*theta4)/h^2], [[12, 5], (1/169)*Pi^2*(20736*theta1+7200*theta2+14400*theta3+625*theta4)/h^2], [[13, 5], (1/194)*Pi^2*(28561*theta1+8450*theta2+16900*theta3+625*theta4)/h^2], [[14, 5], (1/221)*Pi^2*(38416*theta1+9800*theta2+19600*theta3+625*theta4)/h^2], [[15, 5], (1/250)*Pi^2*(50625*theta1+11250*theta2+22500*theta3+625*theta4)/h^2], [[16, 5], (1/281)*Pi^2*(65536*theta1+12800*theta2+25600*theta3+625*theta4)/h^2], [[17, 5], (1/314)*Pi^2*(83521*theta1+14450*theta2+28900*theta3+625*theta4)/h^2], [[18, 5], (1/349)*Pi^2*(104976*theta1+16200*theta2+32400*theta3+625*theta4)/h^2], [[19, 5], (1/386)*Pi^2*(130321*theta1+18050*theta2+36100*theta3+625*theta4)/h^2], [[20, 5], (1/425)*Pi^2*(160000*theta1+20000*theta2+40000*theta3+625*theta4)/h^2], [[1, 6], (1/37)*Pi^2*(theta1+72*theta2+144*theta3+1296*theta4)/h^2], [[2, 6], (1/40)*Pi^2*(16*theta1+288*theta2+576*theta3+1296*theta4)/h^2], [[3, 6], (1/45)*Pi^2*(81*theta1+648*theta2+1296*theta3+1296*theta4)/h^2], [[4, 6], (1/52)*Pi^2*(256*theta1+1152*theta2+2304*theta3+1296*theta4)/h^2], [[5, 6], (1/61)*Pi^2*(625*theta1+1800*theta2+3600*theta3+1296*theta4)/h^2], [[6, 6], (1/72)*Pi^2*(1296*theta1+2592*theta2+5184*theta3+1296*theta4)/h^2], [[7, 6], (1/85)*Pi^2*(2401*theta1+3528*theta2+7056*theta3+1296*theta4)/h^2], [[8, 6], (1/100)*Pi^2*(4096*theta1+4608*theta2+9216*theta3+1296*theta4)/h^2], [[9, 6], (1/117)*Pi^2*(6561*theta1+5832*theta2+11664*theta3+1296*theta4)/h^2], [[10, 6], (1/136)*Pi^2*(10000*theta1+7200*theta2+14400*theta3+1296*theta4)/h^2], [[11, 6], (1/157)*Pi^2*(14641*theta1+8712*theta2+17424*theta3+1296*theta4)/h^2], [[12, 6], (1/180)*Pi^2*(20736*theta1+10368*theta2+20736*theta3+1296*theta4)/h^2], [[13, 6], (1/205)*Pi^2*(28561*theta1+12168*theta2+24336*theta3+1296*theta4)/h^2], [[14, 6], (1/232)*Pi^2*(38416*theta1+14112*theta2+28224*theta3+1296*theta4)/h^2], [[15, 6], (1/261)*Pi^2*(50625*theta1+16200*theta2+32400*theta3+1296*theta4)/h^2], [[16, 6], (1/292)*Pi^2*(65536*theta1+18432*theta2+36864*theta3+1296*theta4)/h^2], [[17, 6], (1/325)*Pi^2*(83521*theta1+20808*theta2+41616*theta3+1296*theta4)/h^2], [[18, 6], (1/360)*Pi^2*(104976*theta1+23328*theta2+46656*theta3+1296*theta4)/h^2], [[19, 6], (1/397)*Pi^2*(130321*theta1+25992*theta2+51984*theta3+1296*theta4)/h^2], [[20, 6], (1/436)*Pi^2*(160000*theta1+28800*theta2+57600*theta3+1296*theta4)/h^2], [[1, 7], (1/50)*Pi^2*(theta1+98*theta2+196*theta3+2401*theta4)/h^2], [[2, 7], (1/53)*Pi^2*(16*theta1+392*theta2+784*theta3+2401*theta4)/h^2], [[3, 7], (1/58)*Pi^2*(81*theta1+882*theta2+1764*theta3+2401*theta4)/h^2], [[4, 7], (1/65)*Pi^2*(256*theta1+1568*theta2+3136*theta3+2401*theta4)/h^2], [[5, 7], (1/74)*Pi^2*(625*theta1+2450*theta2+4900*theta3+2401*theta4)/h^2], [[6, 7], (1/85)*Pi^2*(1296*theta1+3528*theta2+7056*theta3+2401*theta4)/h^2], [[7, 7], (1/98)*Pi^2*(2401*theta1+4802*theta2+9604*theta3+2401*theta4)/h^2], [[8, 7], (1/113)*Pi^2*(4096*theta1+6272*theta2+12544*theta3+2401*theta4)/h^2], [[9, 7], (1/130)*Pi^2*(6561*theta1+7938*theta2+15876*theta3+2401*theta4)/h^2], [[10, 7], (1/149)*Pi^2*(10000*theta1+9800*theta2+19600*theta3+2401*theta4)/h^2], [[11, 7], (1/170)*Pi^2*(14641*theta1+11858*theta2+23716*theta3+2401*theta4)/h^2], [[12, 7], (1/193)*Pi^2*(20736*theta1+14112*theta2+28224*theta3+2401*theta4)/h^2], [[13, 7], (1/218)*Pi^2*(28561*theta1+16562*theta2+33124*theta3+2401*theta4)/h^2], [[14, 7], (1/245)*Pi^2*(38416*theta1+19208*theta2+38416*theta3+2401*theta4)/h^2], [[15, 7], (1/274)*Pi^2*(50625*theta1+22050*theta2+44100*theta3+2401*theta4)/h^2], [[16, 7], (1/305)*Pi^2*(65536*theta1+25088*theta2+50176*theta3+2401*theta4)/h^2], [[17, 7], (1/338)*Pi^2*(83521*theta1+28322*theta2+56644*theta3+2401*theta4)/h^2], [[18, 7], (1/373)*Pi^2*(104976*theta1+31752*theta2+63504*theta3+2401*theta4)/h^2], [[19, 7], (1/410)*Pi^2*(130321*theta1+35378*theta2+70756*theta3+2401*theta4)/h^2], [[20, 7], (1/449)*Pi^2*(160000*theta1+39200*theta2+78400*theta3+2401*theta4)/h^2], [[1, 8], (1/65)*Pi^2*(theta1+128*theta2+256*theta3+4096*theta4)/h^2], [[2, 8], (1/68)*Pi^2*(16*theta1+512*theta2+1024*theta3+4096*theta4)/h^2], [[3, 8], (1/73)*Pi^2*(81*theta1+1152*theta2+2304*theta3+4096*theta4)/h^2], [[4, 8], (1/80)*Pi^2*(256*theta1+2048*theta2+4096*theta3+4096*theta4)/h^2], [[5, 8], (1/89)*Pi^2*(625*theta1+3200*theta2+6400*theta3+4096*theta4)/h^2], [[6, 8], (1/100)*Pi^2*(1296*theta1+4608*theta2+9216*theta3+4096*theta4)/h^2], [[7, 8], (1/113)*Pi^2*(2401*theta1+6272*theta2+12544*theta3+4096*theta4)/h^2], [[8, 8], (1/128)*Pi^2*(4096*theta1+8192*theta2+16384*theta3+4096*theta4)/h^2], [[9, 8], (1/145)*Pi^2*(6561*theta1+10368*theta2+20736*theta3+4096*theta4)/h^2], [[10, 8], (1/164)*Pi^2*(10000*theta1+12800*theta2+25600*theta3+4096*theta4)/h^2], [[11, 8], (1/185)*Pi^2*(14641*theta1+15488*theta2+30976*theta3+4096*theta4)/h^2], [[12, 8], (1/208)*Pi^2*(20736*theta1+18432*theta2+36864*theta3+4096*theta4)/h^2], [[13, 8], (1/233)*Pi^2*(28561*theta1+21632*theta2+43264*theta3+4096*theta4)/h^2], [[14, 8], (1/260)*Pi^2*(38416*theta1+25088*theta2+50176*theta3+4096*theta4)/h^2], [[15, 8], (1/289)*Pi^2*(50625*theta1+28800*theta2+57600*theta3+4096*theta4)/h^2], [[16, 8], (1/320)*Pi^2*(65536*theta1+32768*theta2+65536*theta3+4096*theta4)/h^2], [[17, 8], (1/353)*Pi^2*(83521*theta1+36992*theta2+73984*theta3+4096*theta4)/h^2], [[18, 8], (1/388)*Pi^2*(104976*theta1+41472*theta2+82944*theta3+4096*theta4)/h^2], [[19, 8], (1/425)*Pi^2*(130321*theta1+46208*theta2+92416*theta3+4096*theta4)/h^2], [[20, 8], (1/464)*Pi^2*(160000*theta1+51200*theta2+102400*theta3+4096*theta4)/h^2], [[1, 9], (1/82)*Pi^2*(theta1+162*theta2+324*theta3+6561*theta4)/h^2], [[2, 9], (1/85)*Pi^2*(16*theta1+648*theta2+1296*theta3+6561*theta4)/h^2], [[3, 9], (1/90)*Pi^2*(81*theta1+1458*theta2+2916*theta3+6561*theta4)/h^2], [[4, 9], (1/97)*Pi^2*(256*theta1+2592*theta2+5184*theta3+6561*theta4)/h^2], [[5, 9], (1/106)*Pi^2*(625*theta1+4050*theta2+8100*theta3+6561*theta4)/h^2], [[6, 9], (1/117)*Pi^2*(1296*theta1+5832*theta2+11664*theta3+6561*theta4)/h^2], [[7, 9], (1/130)*Pi^2*(2401*theta1+7938*theta2+15876*theta3+6561*theta4)/h^2], [[8, 9], (1/145)*Pi^2*(4096*theta1+10368*theta2+20736*theta3+6561*theta4)/h^2], [[9, 9], (1/162)*Pi^2*(6561*theta1+13122*theta2+26244*theta3+6561*theta4)/h^2], [[10, 9], (1/181)*Pi^2*(10000*theta1+16200*theta2+32400*theta3+6561*theta4)/h^2], [[11, 9], (1/202)*Pi^2*(14641*theta1+19602*theta2+39204*theta3+6561*theta4)/h^2], [[12, 9], (1/225)*Pi^2*(20736*theta1+23328*theta2+46656*theta3+6561*theta4)/h^2], [[13, 9], (1/250)*Pi^2*(28561*theta1+27378*theta2+54756*theta3+6561*theta4)/h^2], [[14, 9], (1/277)*Pi^2*(38416*theta1+31752*theta2+63504*theta3+6561*theta4)/h^2], [[15, 9], (1/306)*Pi^2*(50625*theta1+36450*theta2+72900*theta3+6561*theta4)/h^2], [[16, 9], (1/337)*Pi^2*(65536*theta1+41472*theta2+82944*theta3+6561*theta4)/h^2], [[17, 9], (1/370)*Pi^2*(83521*theta1+46818*theta2+93636*theta3+6561*theta4)/h^2], [[18, 9], (1/405)*Pi^2*(104976*theta1+52488*theta2+104976*theta3+6561*theta4)/h^2], [[19, 9], (1/442)*Pi^2*(130321*theta1+58482*theta2+116964*theta3+6561*theta4)/h^2], [[20, 9], (1/481)*Pi^2*(160000*theta1+64800*theta2+129600*theta3+6561*theta4)/h^2], [[1, 10], (1/101)*Pi^2*(theta1+200*theta2+400*theta3+10000*theta4)/h^2], [[2, 10], (1/104)*Pi^2*(16*theta1+800*theta2+1600*theta3+10000*theta4)/h^2], [[3, 10], (1/109)*Pi^2*(81*theta1+1800*theta2+3600*theta3+10000*theta4)/h^2], [[4, 10], (1/116)*Pi^2*(256*theta1+3200*theta2+6400*theta3+10000*theta4)/h^2], [[5, 10], (1/125)*Pi^2*(625*theta1+5000*theta2+10000*theta3+10000*theta4)/h^2], [[6, 10], (1/136)*Pi^2*(1296*theta1+7200*theta2+14400*theta3+10000*theta4)/h^2], [[7, 10], (1/149)*Pi^2*(2401*theta1+9800*theta2+19600*theta3+10000*theta4)/h^2], [[8, 10], (1/164)*Pi^2*(4096*theta1+12800*theta2+25600*theta3+10000*theta4)/h^2], [[9, 10], (1/181)*Pi^2*(6561*theta1+16200*theta2+32400*theta3+10000*theta4)/h^2], [[10, 10], (1/200)*Pi^2*(10000*theta1+20000*theta2+40000*theta3+10000*theta4)/h^2], [[11, 10], (1/221)*Pi^2*(14641*theta1+24200*theta2+48400*theta3+10000*theta4)/h^2], [[12, 10], (1/244)*Pi^2*(20736*theta1+28800*theta2+57600*theta3+10000*theta4)/h^2], [[13, 10], (1/269)*Pi^2*(28561*theta1+33800*theta2+67600*theta3+10000*theta4)/h^2], [[14, 10], (1/296)*Pi^2*(38416*theta1+39200*theta2+78400*theta3+10000*theta4)/h^2], [[15, 10], (1/325)*Pi^2*(50625*theta1+45000*theta2+90000*theta3+10000*theta4)/h^2], [[16, 10], (1/356)*Pi^2*(65536*theta1+51200*theta2+102400*theta3+10000*theta4)/h^2], [[17, 10], (1/389)*Pi^2*(83521*theta1+57800*theta2+115600*theta3+10000*theta4)/h^2], [[18, 10], (1/424)*Pi^2*(104976*theta1+64800*theta2+129600*theta3+10000*theta4)/h^2], [[19, 10], (1/461)*Pi^2*(130321*theta1+72200*theta2+144400*theta3+10000*theta4)/h^2], [[20, 10], (1/500)*Pi^2*(160000*theta1+80000*theta2+160000*theta3+10000*theta4)/h^2], [[1, 11], (1/122)*Pi^2*(theta1+242*theta2+484*theta3+14641*theta4)/h^2], [[2, 11], (1/125)*Pi^2*(16*theta1+968*theta2+1936*theta3+14641*theta4)/h^2], [[3, 11], (1/130)*Pi^2*(81*theta1+2178*theta2+4356*theta3+14641*theta4)/h^2], [[4, 11], (1/137)*Pi^2*(256*theta1+3872*theta2+7744*theta3+14641*theta4)/h^2], [[5, 11], (1/146)*Pi^2*(625*theta1+6050*theta2+12100*theta3+14641*theta4)/h^2], [[6, 11], (1/157)*Pi^2*(1296*theta1+8712*theta2+17424*theta3+14641*theta4)/h^2], [[7, 11], (1/170)*Pi^2*(2401*theta1+11858*theta2+23716*theta3+14641*theta4)/h^2], [[8, 11], (1/185)*Pi^2*(4096*theta1+15488*theta2+30976*theta3+14641*theta4)/h^2], [[9, 11], (1/202)*Pi^2*(6561*theta1+19602*theta2+39204*theta3+14641*theta4)/h^2], [[10, 11], (1/221)*Pi^2*(10000*theta1+24200*theta2+48400*theta3+14641*theta4)/h^2], [[11, 11], (1/242)*Pi^2*(14641*theta1+29282*theta2+58564*theta3+14641*theta4)/h^2], [[12, 11], (1/265)*Pi^2*(20736*theta1+34848*theta2+69696*theta3+14641*theta4)/h^2], [[13, 11], (1/290)*Pi^2*(28561*theta1+40898*theta2+81796*theta3+14641*theta4)/h^2], [[14, 11], (1/317)*Pi^2*(38416*theta1+47432*theta2+94864*theta3+14641*theta4)/h^2], [[15, 11], (1/346)*Pi^2*(50625*theta1+54450*theta2+108900*theta3+14641*theta4)/h^2], [[16, 11], (1/377)*Pi^2*(65536*theta1+61952*theta2+123904*theta3+14641*theta4)/h^2], [[17, 11], (1/410)*Pi^2*(83521*theta1+69938*theta2+139876*theta3+14641*theta4)/h^2], [[18, 11], (1/445)*Pi^2*(104976*theta1+78408*theta2+156816*theta3+14641*theta4)/h^2], [[19, 11], (1/482)*Pi^2*(130321*theta1+87362*theta2+174724*theta3+14641*theta4)/h^2], [[20, 11], (1/521)*Pi^2*(160000*theta1+96800*theta2+193600*theta3+14641*theta4)/h^2], [[1, 12], (1/145)*Pi^2*(theta1+288*theta2+576*theta3+20736*theta4)/h^2], [[2, 12], (1/148)*Pi^2*(16*theta1+1152*theta2+2304*theta3+20736*theta4)/h^2], [[3, 12], (1/153)*Pi^2*(81*theta1+2592*theta2+5184*theta3+20736*theta4)/h^2], [[4, 12], (1/160)*Pi^2*(256*theta1+4608*theta2+9216*theta3+20736*theta4)/h^2], [[5, 12], (1/169)*Pi^2*(625*theta1+7200*theta2+14400*theta3+20736*theta4)/h^2], [[6, 12], (1/180)*Pi^2*(1296*theta1+10368*theta2+20736*theta3+20736*theta4)/h^2], [[7, 12], (1/193)*Pi^2*(2401*theta1+14112*theta2+28224*theta3+20736*theta4)/h^2], [[8, 12], (1/208)*Pi^2*(4096*theta1+18432*theta2+36864*theta3+20736*theta4)/h^2], [[9, 12], (1/225)*Pi^2*(6561*theta1+23328*theta2+46656*theta3+20736*theta4)/h^2], [[10, 12], (1/244)*Pi^2*(10000*theta1+28800*theta2+57600*theta3+20736*theta4)/h^2], [[11, 12], (1/265)*Pi^2*(14641*theta1+34848*theta2+69696*theta3+20736*theta4)/h^2], [[12, 12], (1/288)*Pi^2*(20736*theta1+41472*theta2+82944*theta3+20736*theta4)/h^2], [[13, 12], (1/313)*Pi^2*(28561*theta1+48672*theta2+97344*theta3+20736*theta4)/h^2], [[14, 12], (1/340)*Pi^2*(38416*theta1+56448*theta2+112896*theta3+20736*theta4)/h^2], [[15, 12], (1/369)*Pi^2*(50625*theta1+64800*theta2+129600*theta3+20736*theta4)/h^2], [[16, 12], (1/400)*Pi^2*(65536*theta1+73728*theta2+147456*theta3+20736*theta4)/h^2], [[17, 12], (1/433)*Pi^2*(83521*theta1+83232*theta2+166464*theta3+20736*theta4)/h^2], [[18, 12], (1/468)*Pi^2*(104976*theta1+93312*theta2+186624*theta3+20736*theta4)/h^2], [[19, 12], (1/505)*Pi^2*(130321*theta1+103968*theta2+207936*theta3+20736*theta4)/h^2], [[20, 12], (1/544)*Pi^2*(160000*theta1+115200*theta2+230400*theta3+20736*theta4)/h^2], [[1, 13], (1/170)*Pi^2*(theta1+338*theta2+676*theta3+28561*theta4)/h^2], [[2, 13], (1/173)*Pi^2*(16*theta1+1352*theta2+2704*theta3+28561*theta4)/h^2], [[3, 13], (1/178)*Pi^2*(81*theta1+3042*theta2+6084*theta3+28561*theta4)/h^2], [[4, 13], (1/185)*Pi^2*(256*theta1+5408*theta2+10816*theta3+28561*theta4)/h^2], [[5, 13], (1/194)*Pi^2*(625*theta1+8450*theta2+16900*theta3+28561*theta4)/h^2], [[6, 13], (1/205)*Pi^2*(1296*theta1+12168*theta2+24336*theta3+28561*theta4)/h^2], [[7, 13], (1/218)*Pi^2*(2401*theta1+16562*theta2+33124*theta3+28561*theta4)/h^2], [[8, 13], (1/233)*Pi^2*(4096*theta1+21632*theta2+43264*theta3+28561*theta4)/h^2], [[9, 13], (1/250)*Pi^2*(6561*theta1+27378*theta2+54756*theta3+28561*theta4)/h^2], [[10, 13], (1/269)*Pi^2*(10000*theta1+33800*theta2+67600*theta3+28561*theta4)/h^2], [[11, 13], (1/290)*Pi^2*(14641*theta1+40898*theta2+81796*theta3+28561*theta4)/h^2], [[12, 13], (1/313)*Pi^2*(20736*theta1+48672*theta2+97344*theta3+28561*theta4)/h^2], [[13, 13], (1/338)*Pi^2*(28561*theta1+57122*theta2+114244*theta3+28561*theta4)/h^2], [[14, 13], (1/365)*Pi^2*(38416*theta1+66248*theta2+132496*theta3+28561*theta4)/h^2], [[15, 13], (1/394)*Pi^2*(50625*theta1+76050*theta2+152100*theta3+28561*theta4)/h^2], [[16, 13], (1/425)*Pi^2*(65536*theta1+86528*theta2+173056*theta3+28561*theta4)/h^2], [[17, 13], (1/458)*Pi^2*(83521*theta1+97682*theta2+195364*theta3+28561*theta4)/h^2], [[18, 13], (1/493)*Pi^2*(104976*theta1+109512*theta2+219024*theta3+28561*theta4)/h^2], [[19, 13], (1/530)*Pi^2*(130321*theta1+122018*theta2+244036*theta3+28561*theta4)/h^2], [[20, 13], (1/569)*Pi^2*(160000*theta1+135200*theta2+270400*theta3+28561*theta4)/h^2], [[1, 14], (1/197)*Pi^2*(theta1+392*theta2+784*theta3+38416*theta4)/h^2], [[2, 14], (1/200)*Pi^2*(16*theta1+1568*theta2+3136*theta3+38416*theta4)/h^2], [[3, 14], (1/205)*Pi^2*(81*theta1+3528*theta2+7056*theta3+38416*theta4)/h^2], [[4, 14], (1/212)*Pi^2*(256*theta1+6272*theta2+12544*theta3+38416*theta4)/h^2], [[5, 14], (1/221)*Pi^2*(625*theta1+9800*theta2+19600*theta3+38416*theta4)/h^2], [[6, 14], (1/232)*Pi^2*(1296*theta1+14112*theta2+28224*theta3+38416*theta4)/h^2], [[7, 14], (1/245)*Pi^2*(2401*theta1+19208*theta2+38416*theta3+38416*theta4)/h^2], [[8, 14], (1/260)*Pi^2*(4096*theta1+25088*theta2+50176*theta3+38416*theta4)/h^2], [[9, 14], (1/277)*Pi^2*(6561*theta1+31752*theta2+63504*theta3+38416*theta4)/h^2], [[10, 14], (1/296)*Pi^2*(10000*theta1+39200*theta2+78400*theta3+38416*theta4)/h^2], [[11, 14], (1/317)*Pi^2*(14641*theta1+47432*theta2+94864*theta3+38416*theta4)/h^2], [[12, 14], (1/340)*Pi^2*(20736*theta1+56448*theta2+112896*theta3+38416*theta4)/h^2], [[13, 14], (1/365)*Pi^2*(28561*theta1+66248*theta2+132496*theta3+38416*theta4)/h^2], [[14, 14], (1/392)*Pi^2*(38416*theta1+76832*theta2+153664*theta3+38416*theta4)/h^2], [[15, 14], (1/421)*Pi^2*(50625*theta1+88200*theta2+176400*theta3+38416*theta4)/h^2], [[16, 14], (1/452)*Pi^2*(65536*theta1+100352*theta2+200704*theta3+38416*theta4)/h^2], [[17, 14], (1/485)*Pi^2*(83521*theta1+113288*theta2+226576*theta3+38416*theta4)/h^2], [[18, 14], (1/520)*Pi^2*(104976*theta1+127008*theta2+254016*theta3+38416*theta4)/h^2], [[19, 14], (1/557)*Pi^2*(130321*theta1+141512*theta2+283024*theta3+38416*theta4)/h^2], [[20, 14], (1/596)*Pi^2*(160000*theta1+156800*theta2+313600*theta3+38416*theta4)/h^2], [[1, 15], (1/226)*Pi^2*(theta1+450*theta2+900*theta3+50625*theta4)/h^2], [[2, 15], (1/229)*Pi^2*(16*theta1+1800*theta2+3600*theta3+50625*theta4)/h^2], [[3, 15], (1/234)*Pi^2*(81*theta1+4050*theta2+8100*theta3+50625*theta4)/h^2], [[4, 15], (1/241)*Pi^2*(256*theta1+7200*theta2+14400*theta3+50625*theta4)/h^2], [[5, 15], (1/250)*Pi^2*(625*theta1+11250*theta2+22500*theta3+50625*theta4)/h^2], [[6, 15], (1/261)*Pi^2*(1296*theta1+16200*theta2+32400*theta3+50625*theta4)/h^2], [[7, 15], (1/274)*Pi^2*(2401*theta1+22050*theta2+44100*theta3+50625*theta4)/h^2], [[8, 15], (1/289)*Pi^2*(4096*theta1+28800*theta2+57600*theta3+50625*theta4)/h^2], [[9, 15], (1/306)*Pi^2*(6561*theta1+36450*theta2+72900*theta3+50625*theta4)/h^2], [[10, 15], (1/325)*Pi^2*(10000*theta1+45000*theta2+90000*theta3+50625*theta4)/h^2], [[11, 15], (1/346)*Pi^2*(14641*theta1+54450*theta2+108900*theta3+50625*theta4)/h^2], [[12, 15], (1/369)*Pi^2*(20736*theta1+64800*theta2+129600*theta3+50625*theta4)/h^2], [[13, 15], (1/394)*Pi^2*(28561*theta1+76050*theta2+152100*theta3+50625*theta4)/h^2], [[14, 15], (1/421)*Pi^2*(38416*theta1+88200*theta2+176400*theta3+50625*theta4)/h^2], [[15, 15], (1/450)*Pi^2*(50625*theta1+101250*theta2+202500*theta3+50625*theta4)/h^2], [[16, 15], (1/481)*Pi^2*(65536*theta1+115200*theta2+230400*theta3+50625*theta4)/h^2], [[17, 15], (1/514)*Pi^2*(83521*theta1+130050*theta2+260100*theta3+50625*theta4)/h^2], [[18, 15], (1/549)*Pi^2*(104976*theta1+145800*theta2+291600*theta3+50625*theta4)/h^2], [[19, 15], (1/586)*Pi^2*(130321*theta1+162450*theta2+324900*theta3+50625*theta4)/h^2], [[20, 15], (1/625)*Pi^2*(160000*theta1+180000*theta2+360000*theta3+50625*theta4)/h^2], [[1, 16], (1/257)*Pi^2*(theta1+512*theta2+1024*theta3+65536*theta4)/h^2], [[2, 16], (1/260)*Pi^2*(16*theta1+2048*theta2+4096*theta3+65536*theta4)/h^2], [[3, 16], (1/265)*Pi^2*(81*theta1+4608*theta2+9216*theta3+65536*theta4)/h^2], [[4, 16], (1/272)*Pi^2*(256*theta1+8192*theta2+16384*theta3+65536*theta4)/h^2], [[5, 16], (1/281)*Pi^2*(625*theta1+12800*theta2+25600*theta3+65536*theta4)/h^2], [[6, 16], (1/292)*Pi^2*(1296*theta1+18432*theta2+36864*theta3+65536*theta4)/h^2], [[7, 16], (1/305)*Pi^2*(2401*theta1+25088*theta2+50176*theta3+65536*theta4)/h^2], [[8, 16], (1/320)*Pi^2*(4096*theta1+32768*theta2+65536*theta3+65536*theta4)/h^2], [[9, 16], (1/337)*Pi^2*(6561*theta1+41472*theta2+82944*theta3+65536*theta4)/h^2], [[10, 16], (1/356)*Pi^2*(10000*theta1+51200*theta2+102400*theta3+65536*theta4)/h^2], [[11, 16], (1/377)*Pi^2*(14641*theta1+61952*theta2+123904*theta3+65536*theta4)/h^2], [[12, 16], (1/400)*Pi^2*(20736*theta1+73728*theta2+147456*theta3+65536*theta4)/h^2], [[13, 16], (1/425)*Pi^2*(28561*theta1+86528*theta2+173056*theta3+65536*theta4)/h^2], [[14, 16], (1/452)*Pi^2*(38416*theta1+100352*theta2+200704*theta3+65536*theta4)/h^2], [[15, 16], (1/481)*Pi^2*(50625*theta1+115200*theta2+230400*theta3+65536*theta4)/h^2], [[16, 16], (1/512)*Pi^2*(65536*theta1+131072*theta2+262144*theta3+65536*theta4)/h^2], [[17, 16], (1/545)*Pi^2*(83521*theta1+147968*theta2+295936*theta3+65536*theta4)/h^2], [[18, 16], (1/580)*Pi^2*(104976*theta1+165888*theta2+331776*theta3+65536*theta4)/h^2], [[19, 16], (1/617)*Pi^2*(130321*theta1+184832*theta2+369664*theta3+65536*theta4)/h^2], [[20, 16], (1/656)*Pi^2*(160000*theta1+204800*theta2+409600*theta3+65536*theta4)/h^2], [[1, 17], (1/290)*Pi^2*(theta1+578*theta2+1156*theta3+83521*theta4)/h^2], [[2, 17], (1/293)*Pi^2*(16*theta1+2312*theta2+4624*theta3+83521*theta4)/h^2], [[3, 17], (1/298)*Pi^2*(81*theta1+5202*theta2+10404*theta3+83521*theta4)/h^2], [[4, 17], (1/305)*Pi^2*(256*theta1+9248*theta2+18496*theta3+83521*theta4)/h^2], [[5, 17], (1/314)*Pi^2*(625*theta1+14450*theta2+28900*theta3+83521*theta4)/h^2], [[6, 17], (1/325)*Pi^2*(1296*theta1+20808*theta2+41616*theta3+83521*theta4)/h^2], [[7, 17], (1/338)*Pi^2*(2401*theta1+28322*theta2+56644*theta3+83521*theta4)/h^2], [[8, 17], (1/353)*Pi^2*(4096*theta1+36992*theta2+73984*theta3+83521*theta4)/h^2], [[9, 17], (1/370)*Pi^2*(6561*theta1+46818*theta2+93636*theta3+83521*theta4)/h^2], [[10, 17], (1/389)*Pi^2*(10000*theta1+57800*theta2+115600*theta3+83521*theta4)/h^2], [[11, 17], (1/410)*Pi^2*(14641*theta1+69938*theta2+139876*theta3+83521*theta4)/h^2], [[12, 17], (1/433)*Pi^2*(20736*theta1+83232*theta2+166464*theta3+83521*theta4)/h^2], [[13, 17], (1/458)*Pi^2*(28561*theta1+97682*theta2+195364*theta3+83521*theta4)/h^2], [[14, 17], (1/485)*Pi^2*(38416*theta1+113288*theta2+226576*theta3+83521*theta4)/h^2], [[15, 17], (1/514)*Pi^2*(50625*theta1+130050*theta2+260100*theta3+83521*theta4)/h^2], [[16, 17], (1/545)*Pi^2*(65536*theta1+147968*theta2+295936*theta3+83521*theta4)/h^2], [[17, 17], (1/578)*Pi^2*(83521*theta1+167042*theta2+334084*theta3+83521*theta4)/h^2], [[18, 17], (1/613)*Pi^2*(104976*theta1+187272*theta2+374544*theta3+83521*theta4)/h^2], [[19, 17], (1/650)*Pi^2*(130321*theta1+208658*theta2+417316*theta3+83521*theta4)/h^2], [[20, 17], (1/689)*Pi^2*(160000*theta1+231200*theta2+462400*theta3+83521*theta4)/h^2], [[1, 18], (1/325)*Pi^2*(theta1+648*theta2+1296*theta3+104976*theta4)/h^2], [[2, 18], (1/328)*Pi^2*(16*theta1+2592*theta2+5184*theta3+104976*theta4)/h^2], [[3, 18], (1/333)*Pi^2*(81*theta1+5832*theta2+11664*theta3+104976*theta4)/h^2], [[4, 18], (1/340)*Pi^2*(256*theta1+10368*theta2+20736*theta3+104976*theta4)/h^2], [[5, 18], (1/349)*Pi^2*(625*theta1+16200*theta2+32400*theta3+104976*theta4)/h^2], [[6, 18], (1/360)*Pi^2*(1296*theta1+23328*theta2+46656*theta3+104976*theta4)/h^2], [[7, 18], (1/373)*Pi^2*(2401*theta1+31752*theta2+63504*theta3+104976*theta4)/h^2], [[8, 18], (1/388)*Pi^2*(4096*theta1+41472*theta2+82944*theta3+104976*theta4)/h^2], [[9, 18], (1/405)*Pi^2*(6561*theta1+52488*theta2+104976*theta3+104976*theta4)/h^2], [[10, 18], (1/424)*Pi^2*(10000*theta1+64800*theta2+129600*theta3+104976*theta4)/h^2], [[11, 18], (1/445)*Pi^2*(14641*theta1+78408*theta2+156816*theta3+104976*theta4)/h^2], [[12, 18], (1/468)*Pi^2*(20736*theta1+93312*theta2+186624*theta3+104976*theta4)/h^2], [[13, 18], (1/493)*Pi^2*(28561*theta1+109512*theta2+219024*theta3+104976*theta4)/h^2], [[14, 18], (1/520)*Pi^2*(38416*theta1+127008*theta2+254016*theta3+104976*theta4)/h^2], [[15, 18], (1/549)*Pi^2*(50625*theta1+145800*theta2+291600*theta3+104976*theta4)/h^2], [[16, 18], (1/580)*Pi^2*(65536*theta1+165888*theta2+331776*theta3+104976*theta4)/h^2], [[17, 18], (1/613)*Pi^2*(83521*theta1+187272*theta2+374544*theta3+104976*theta4)/h^2], [[18, 18], (1/648)*Pi^2*(104976*theta1+209952*theta2+419904*theta3+104976*theta4)/h^2], [[19, 18], (1/685)*Pi^2*(130321*theta1+233928*theta2+467856*theta3+104976*theta4)/h^2], [[20, 18], (1/724)*Pi^2*(160000*theta1+259200*theta2+518400*theta3+104976*theta4)/h^2], [[1, 19], (1/362)*Pi^2*(theta1+722*theta2+1444*theta3+130321*theta4)/h^2], [[2, 19], (1/365)*Pi^2*(16*theta1+2888*theta2+5776*theta3+130321*theta4)/h^2], [[3, 19], (1/370)*Pi^2*(81*theta1+6498*theta2+12996*theta3+130321*theta4)/h^2], [[4, 19], (1/377)*Pi^2*(256*theta1+11552*theta2+23104*theta3+130321*theta4)/h^2], [[5, 19], (1/386)*Pi^2*(625*theta1+18050*theta2+36100*theta3+130321*theta4)/h^2], [[6, 19], (1/397)*Pi^2*(1296*theta1+25992*theta2+51984*theta3+130321*theta4)/h^2], [[7, 19], (1/410)*Pi^2*(2401*theta1+35378*theta2+70756*theta3+130321*theta4)/h^2], [[8, 19], (1/425)*Pi^2*(4096*theta1+46208*theta2+92416*theta3+130321*theta4)/h^2], [[9, 19], (1/442)*Pi^2*(6561*theta1+58482*theta2+116964*theta3+130321*theta4)/h^2], [[10, 19], (1/461)*Pi^2*(10000*theta1+72200*theta2+144400*theta3+130321*theta4)/h^2], [[11, 19], (1/482)*Pi^2*(14641*theta1+87362*theta2+174724*theta3+130321*theta4)/h^2], [[12, 19], (1/505)*Pi^2*(20736*theta1+103968*theta2+207936*theta3+130321*theta4)/h^2], [[13, 19], (1/530)*Pi^2*(28561*theta1+122018*theta2+244036*theta3+130321*theta4)/h^2], [[14, 19], (1/557)*Pi^2*(38416*theta1+141512*theta2+283024*theta3+130321*theta4)/h^2], [[15, 19], (1/586)*Pi^2*(50625*theta1+162450*theta2+324900*theta3+130321*theta4)/h^2], [[16, 19], (1/617)*Pi^2*(65536*theta1+184832*theta2+369664*theta3+130321*theta4)/h^2], [[17, 19], (1/650)*Pi^2*(83521*theta1+208658*theta2+417316*theta3+130321*theta4)/h^2], [[18, 19], (1/685)*Pi^2*(104976*theta1+233928*theta2+467856*theta3+130321*theta4)/h^2], [[19, 19], (1/722)*Pi^2*(130321*theta1+260642*theta2+521284*theta3+130321*theta4)/h^2], [[20, 19], (1/761)*Pi^2*(160000*theta1+288800*theta2+577600*theta3+130321*theta4)/h^2], [[1, 20], (1/401)*Pi^2*(theta1+800*theta2+1600*theta3+160000*theta4)/h^2], [[2, 20], (1/404)*Pi^2*(16*theta1+3200*theta2+6400*theta3+160000*theta4)/h^2], [[3, 20], (1/409)*Pi^2*(81*theta1+7200*theta2+14400*theta3+160000*theta4)/h^2], [[4, 20], (1/416)*Pi^2*(256*theta1+12800*theta2+25600*theta3+160000*theta4)/h^2], [[5, 20], (1/425)*Pi^2*(625*theta1+20000*theta2+40000*theta3+160000*theta4)/h^2], [[6, 20], (1/436)*Pi^2*(1296*theta1+28800*theta2+57600*theta3+160000*theta4)/h^2], [[7, 20], (1/449)*Pi^2*(2401*theta1+39200*theta2+78400*theta3+160000*theta4)/h^2], [[8, 20], (1/464)*Pi^2*(4096*theta1+51200*theta2+102400*theta3+160000*theta4)/h^2], [[9, 20], (1/481)*Pi^2*(6561*theta1+64800*theta2+129600*theta3+160000*theta4)/h^2], [[10, 20], (1/500)*Pi^2*(10000*theta1+80000*theta2+160000*theta3+160000*theta4)/h^2], [[11, 20], (1/521)*Pi^2*(14641*theta1+96800*theta2+193600*theta3+160000*theta4)/h^2], [[12, 20], (1/544)*Pi^2*(20736*theta1+115200*theta2+230400*theta3+160000*theta4)/h^2], [[13, 20], (1/569)*Pi^2*(28561*theta1+135200*theta2+270400*theta3+160000*theta4)/h^2], [[14, 20], (1/596)*Pi^2*(38416*theta1+156800*theta2+313600*theta3+160000*theta4)/h^2], [[15, 20], (1/625)*Pi^2*(50625*theta1+180000*theta2+360000*theta3+160000*theta4)/h^2], [[16, 20], (1/656)*Pi^2*(65536*theta1+204800*theta2+409600*theta3+160000*theta4)/h^2], [[17, 20], (1/689)*Pi^2*(83521*theta1+231200*theta2+462400*theta3+160000*theta4)/h^2], [[18, 20], (1/724)*Pi^2*(104976*theta1+259200*theta2+518400*theta3+160000*theta4)/h^2], [[19, 20], (1/761)*Pi^2*(130321*theta1+288800*theta2+577600*theta3+160000*theta4)/h^2], [[20, 20], (1/800)*Pi^2*(160000*theta1+320000*theta2+640000*theta3+160000*theta4)/h^2]]

(3)

 


 

Download problem_new.mw

restart;
i := [seq(2*i-1, i = 1 .. 10)];
A[m]:=[seq((x/a)^(i+1)*(1-x/a)^2, i in i)];

 

I think OP meant the intersection not of the surfaces of these tori, but of the solids themselves. Here is a way:

restart;
with(plots):
ce := (p, q, r, a, b) ->  ((x-p)^2 + (y-q)^2 + (z-r)^2 + a^2 - b^2)^2 - 4*a^2*((x-p)^2 + (y-q)^2):
T1 := ce(1, 1, 1, 2, 1):
T2 := ce(1, 6, 1, 2, 1):
implicitplot3d(max(T1,T2), x=-1..3, y=0..4.5, z=-1..2, style=surface, color="Red", grid=[50, 50, 50], scaling=constrained, axes=normal, orientation=[15,80]);

         

Example:

RandomTools:-Generate(choose({x->x^2,x->x^3,x->x^4}));

 

You are actually solving the inequality with a parameter ( t1 is a parameter). I don't know about the latest versions, but Maple 2018 does not support this, an error message appears:

restart;
solve((4*t1+4*sqrt(t1^2-4*t2))>0,t2, allsolutions, parametric=true);

              Error, (in solve) invalid input: SolveTools:-SemiAlgebraic expects its 1st argument, osys, to be of      type ({list, set})({ratpoly(rational), ratpoly(rational) = ratpoly(rational), ratpoly(rational) <> ratpoly(rational), ratpoly(rational) <= ratpoly(rational), ratpoly(rational) < ratpoly(rational)}), but received {0 < 4*t1+4*(t1^2-4*t2)^(1/2)}

The problem is solved with good accuracy by reducing to a system of 4 equations with 4 unknowns:


 

restart;
f:=(x1,x2)->4*(x1-0.25)^4-x1^2*x2^2+(x2-0.25)^4-1.21:
P:=plots:-implicitplot(f, -2..2, -2..2, color=blue, scaling=constrained):
S:=[seq([x0,y0]+~d*~[cos(t+Pi/2*k),sin(t+Pi/2*k)], k=0..3)];
fsolve({seq(f(S[i][]), i=1..4)}, {x0=-2..2,y0=-2..2,t=0..2*Pi,d=0..2});
S:=eval(S, %);
plots:-display(P, plottools:-polygon(S, style=line, color=red));
Dist:=(X,Y)->sqrt((X[1]-Y[1])^2+(X[2]-Y[2])^2):
seq(Dist(S[i],S[i+1]), i=1..3),Dist(S[1],S[4]); # Side lengths of the square

[[x0+d*cos(t), y0+d*sin(t)], [x0-d*sin(t), y0+d*cos(t)], [x0-d*cos(t), y0-d*sin(t)], [x0+d*sin(t), y0-d*cos(t)]]

 

{d = 1.044286758, t = 3.846075883, x0 = .3125573019, y0 = .4101664686}

 

[[-.4831331659, -.2661555792], [.9888793497, -.3855239992], [1.108247770, 1.086488516], [-.3637647459, 1.205856936]]

 

 

1.476844497, 1.476844496, 1.476844497, 1.476844496

(1)

 


 

Download Square.mw

I do not see any problems in this to waste my time on such manipulations. If anyone likes one form, then he can easily switch to it using the  convert  command.

Examples:

restart;
convert(sec(x), sincos); 
convert(csc(x), sincos);
convert(tan(x), sincos);
convert(sin(x)/cos(x), tan);

                                             

 

P:=a->plots:-display(
	tubeplot([seq](L(s)), s=-2..2.5, radius=0.08, color="Red"),   # the line L
	tubeplot([seq](C(s)), s=-4*Pi..4*Pi, radius=0.08, color="Green", numpoints=200), # the curve C
	plot3d(S(s,t), s=-4*Pi..4*Pi, t=0..a, color="Gold", grid=[80,25]),
	scaling=constrained, style=patch, lightmodel=light4,
	orientation=[-120,75,0], labels=[x,y,z], axes=framed):

plots:-animate(P,[a], a=0..2*Pi, frames=90);

                           


 

 

restart;
lambda1:=-sqrt(64-mu^2):
lambda2:=sqrt(64-mu^2):
plot3d([[lambda1-lambda1*t,mu*t,3-6*t],[lambda2-lambda2*t,mu*t,3-6*t]], t=-8..8, mu=-8..8, grid=[100,100]);
P1:=plots:-implicitplot3d(9*x^2*(3-z)^2+9*y*(3+z)^4 = 16*(-z^2+9)^2, x=-8..8, y=-3..3, z=-3..3, style=surface, grid=[50,50,50]):
P2:=plots:-spacecurve([[t,0,3], [0,t,-3]], t=-8..8, color=red, thickness=3):
plots:-display(P1, P2);

 

 

 

Equation of Generatrix :"`G__lambda,mu`&equiv;{[[x=lambda-lambdat],[y=mu t],[z=3-6 t]](t in `&Ropf;`)" with lambda^2+mu^2 = 64

Cartesian equation of surface:  "S&equiv;{[[9 x^(2)*(3-z)^(2)+9 y^(2)(3+z)^(2)=16*(9-z^(2))^(2) if z<>3 and z<>-3],[[-8<=x<=8 and y=0] if z=3],[[ x=0 and -8<=y<=8] if z=-3]]"


The answer has been edited.
 

Download SurfaceMP_new1.mw

 

restart;
with(combinat):

permute([a,b],1);

[[a], [b]]

(1)

permute([p$3,q$3], 3);

[[p, p, p], [p, p, q], [p, q, p], [p, q, q], [q, p, p], [q, p, q], [q, q, p], [q, q, q]]

(2)

permute([5$3,7$3], 3);

[[5, 5, 5], [5, 5, 7], [5, 7, 5], [5, 7, 7], [7, 5, 5], [7, 5, 7], [7, 7, 5], [7, 7, 7]]

(3)

permute([5$3,7$3,9$3], 2);

[[5, 5], [5, 7], [5, 9], [7, 5], [7, 7], [7, 9], [9, 5], [9, 7], [9, 9]]

(4)

permute([5$3,7$3,9$3], 4);

[[5, 5, 5, 7], [5, 5, 5, 9], [5, 5, 7, 5], [5, 5, 7, 7], [5, 5, 7, 9], [5, 5, 9, 5], [5, 5, 9, 7], [5, 5, 9, 9], [5, 7, 5, 5], [5, 7, 5, 7], [5, 7, 5, 9], [5, 7, 7, 5], [5, 7, 7, 7], [5, 7, 7, 9], [5, 7, 9, 5], [5, 7, 9, 7], [5, 7, 9, 9], [5, 9, 5, 5], [5, 9, 5, 7], [5, 9, 5, 9], [5, 9, 7, 5], [5, 9, 7, 7], [5, 9, 7, 9], [5, 9, 9, 5], [5, 9, 9, 7], [5, 9, 9, 9], [7, 5, 5, 5], [7, 5, 5, 7], [7, 5, 5, 9], [7, 5, 7, 5], [7, 5, 7, 7], [7, 5, 7, 9], [7, 5, 9, 5], [7, 5, 9, 7], [7, 5, 9, 9], [7, 7, 5, 5], [7, 7, 5, 7], [7, 7, 5, 9], [7, 7, 7, 5], [7, 7, 7, 9], [7, 7, 9, 5], [7, 7, 9, 7], [7, 7, 9, 9], [7, 9, 5, 5], [7, 9, 5, 7], [7, 9, 5, 9], [7, 9, 7, 5], [7, 9, 7, 7], [7, 9, 7, 9], [7, 9, 9, 5], [7, 9, 9, 7], [7, 9, 9, 9], [9, 5, 5, 5], [9, 5, 5, 7], [9, 5, 5, 9], [9, 5, 7, 5], [9, 5, 7, 7], [9, 5, 7, 9], [9, 5, 9, 5], [9, 5, 9, 7], [9, 5, 9, 9], [9, 7, 5, 5], [9, 7, 5, 7], [9, 7, 5, 9], [9, 7, 7, 5], [9, 7, 7, 7], [9, 7, 7, 9], [9, 7, 9, 5], [9, 7, 9, 7], [9, 7, 9, 9], [9, 9, 5, 5], [9, 9, 5, 7], [9, 9, 5, 9], [9, 9, 7, 5], [9, 9, 7, 7], [9, 9, 7, 9], [9, 9, 9, 5], [9, 9, 9, 7]]

(5)

 

Download permutations.mw

restart;
with(algcurves):

f:=2*z^6 + z^7/2 - (5*z^11)/4 + 4*z^22 + (29*z^34)/10 - z^40 - (13*z^43)/2 + w^38*(z^2 - z^7/4) + 
 w^49*(-z^9 + z^13/4 + 2*z^14) + w^34*((7*z^14)/3 - (3*z^18)/2) + w^47*(z^10/3 + (7*z^11)/4 + (8*z^21)/5) + 
 w^24*(4*z^8 + (4*z^25)/5 - (3*z^27)/2) + w^9*((-6*z^2)/5 - z^6/2 + (7*z^31)/3) + 
 w^16*((7*z^21)/3 + (4*z^27)/5 + (4*z^32)/3) + w^18*(-6*z^14 - 2*z^31 - z^33) + w^3*(2*z^17 + (7*z^34)/2) + 
 w^16*((-3*z^5)/4 - 2*z^36 + z^39/3) + w^50*(-1/3*z^23 - (7*z^40)/2 + z^42) + w^4*((-3*z^30)/2 + (4*z^38)/3 + (8*z^42)/5) + 
 w^33*(-3*z^4 + (8*z^22)/3 - (8*z^43)/5) + w^16*(-1/4*z^26 - (3*z^41)/4 - z^43) + w^48*((2*z^2)/3 + 6*z^26 + (3*z^43)/5) + 
 w^49*(2*z^18 + z^36 - 2*z^44) + w^10*((-2*z^11)/5 - (3*z^26)/2 + z^45) + w^40*(-1/2*z^20 - z^29 + z^46) + 
 w^36*(-4 + 8*z^13 - (7*z^47)/4) + w^14*((7*z^24)/5 - 6*z^32 - 6*z^49) + w^22*(-2*z^27 - (8*z^50)/3) + 
 w^2*((3*z^10)/5 + (7*z^24)/4 - z^50/4);

genus(f,z,w);

                                                         2268

restart;
L:=[k$1,y$23,f$25];
L0:=sort(ListTools:-Collect(L), key=(t->t[2]));
map(t->t[1], L0); 
map(t->t[2], L0);

    

 

Yes, this is indeed an ellipse, most of which is below the Ox axis and it is strongly elongated along this axis. To see it, you need to lengthen the axes and use the scaling=constrained option to correctly show its shape:

plots:-implicitplot(1/1350000000000000000*x^2-1/14580000000000000000000000000000000*x*y+1/5400000000000000*y^2-1/2250000000*x+173/5400000000*y-1=0, x=-10^10..10^11, y=-3*10^8..3*10^7, gridrefine=3, scaling=constrained, size=[1000,100]);

                               

First 14 15 16 17 18 19 20 Last Page 16 of 291