Kitonum

21685 Reputation

26 Badges

17 years, 185 days

MaplePrimes Activity


These are answers submitted by Kitonum

I think you are simply misinterpreting the Gauss-Bonnet formula in your examples. What are you writing about "...area of upper cone's spherical cap plus length of dual cone's intersection with unit sphere..."  will be true only if the vertices of both cones coincide with the center of the sphere and the proof for this case is trivial (without Gauss-Bonnet formula)  2*Pi*(1-h)+2*Pi*h=2*Pi  .  Consider the extreme case: the radius of the base of the upper cone tends to  0 , and its height to  2 . Then the radius of the base of the lower dual cone will be tending to  , and your whole sum will be tending to  0 .

 

I could not express analytically the relationship between the variables  x, y, z , but it is easy to do numerically. By changing  u  and  v  with a certain step (for example, in a double loop), you easily get the corresponding triples  [x, y, z] . All these triples lie on an interesting surface:

restart;
alpha:=1:
eq1 := x(u,v) = (sqrt(2)*cos(v)^2*cos(2*u) + cos(u)*sin(2*v))/(2 - alpha*sqrt(2)*sin(3*u)*sin(2*v));
eq2 := y(u,v) = (sqrt(2)*cos(v)^2*sin(2*u) - sin(u)*sin(2*v))/(2 - alpha*sqrt(2)*sin(3*u)*sin(2*v));
eq3 := z(u,v) = 3*cos(v)^2/(2 - alpha*sqrt(2)*sin(3*u)*sin(2*v));
plot3d(rhs~([eq1,eq2,eq3]), u=-Pi/2..Pi/2, v=0..Pi, axes=normal, labels=[x,y,z], grid=[200,200], orientation=[-10,70]);

                           

 

 

plot(2, phi=0..Pi/2, color="LightGreen", coords=polar, filled);

                     

If you want to highlight the border with the desired color, then do this:

A:=plot(2, phi=0..Pi/2, color="LightGreen", coords=polar, filled);
B:=plot([[t,0,t=0..2],[2*cos(t),2*sin(t),t=0..Pi/2],[0,t,t=0..2]], color="Green", thickness=3):
plots:-display(A,B);

                      


Edit.

You can re-use the  series  command to an already existing series to obtain the desired simplification.

An example:

A:=series(ln(1+x), x);
series(A/x, x);

                 


If you need to programmatically extract the exponent of   in the term  O(x^n) , then do so:

A:=series(ln(1+x), x):
op(-1,A);

                                             6


Here's an example of another way:

applyrule(O(x^n::posint)/x=O(x^(n-1)), O(x^11)/x);

                                          

Use  combinat:-choose  command for this. An example:

combinat:-choose({$1..10}, 3);

  {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 2, 7}, {1, 2, 8}, {1, 2, 9}, {1, 2, 10}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 3, 8}, {1, 3, 9}, {1, 3, 10}, {1, 4, 5}, {1, 4, 6}, {1, 4, 7}, {1, 4, 8}, {1, 4, 9}, {1, 4, 10}, {1, 5, 6}, {1, 5, 7}, {1, 5, 8}, {1, 5, 9}, {1, 5, 10}, {1, 6, 7}, {1, 6, 8}, {1, 6, 9}, {1, 6, 10}, {1, 7, 8}, {1, 7, 9}, {1, 7, 10}, {1, 8, 9}, {1, 8, 10}, {1, 9, 10}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 3, 7}, {2, 3, 8}, {2, 3, 9}, {2, 3, 10}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7}, {2, 4, 8}, {2, 4, 9}, {2, 4, 10}, {2, 5, 6}, {2, 5, 7}, {2, 5, 8}, {2, 5, 9}, {2, 5, 10}, {2, 6, 7}, {2, 6, 8}, {2, 6, 9}, {2, 6, 10}, {2, 7, 8}, {2, 7, 9}, {2, 7, 10}, {2, 8, 9}, {2, 8, 10}, {2, 9, 10}, {3, 4, 5}, {3, 4, 6}, {3, 4, 7}, {3, 4, 8}, {3, 4, 9}, {3, 4, 10}, {3, 5, 6}, {3, 5, 7}, {3, 5, 8}, {3, 5, 9}, {3, 5, 10}, {3, 6, 7}, {3, 6, 8}, {3, 6, 9}, {3, 6, 10}, {3, 7, 8}, {3, 7, 9}, {3, 7, 10}, {3, 8, 9}, {3, 8, 10}, {3, 9, 10}, {4, 5, 6}, {4, 5, 7}, {4, 5, 8}, {4, 5, 9}, {4, 5, 10}, {4, 6, 7}, {4, 6, 8}, {4, 6, 9}, {4, 6, 10}, {4, 7, 8}, {4, 7, 9}, {4, 7, 10}, {4, 8, 9}, {4, 8, 10}, {4, 9, 10}, {5, 6, 7}, {5, 6, 8}, {5, 6, 9}, {5, 6, 10}, {5, 7, 8}, {5, 7, 9}, {5, 7, 10}, {5, 8, 9}, {5, 8, 10}, {5, 9, 10}, {6, 7, 8}, {6, 7, 9}, {6, 7, 10}, {6, 8, 9}, {6, 8, 10}, {6, 9, 10}, {7, 8, 9}, {7, 8, 10}, {7, 9, 10}, {8, 9, 10}}

I think that all your questions can be answered only numerically with the specified parameter values. Here is an example:

restart;
A:=x->mue+(mun/gama)+(u0^2)-mud*x-mue*exp(x)-(mun/gama)*exp(gama*x)-(u0^2)*(1-2*x/u0^2)^(1/2):

mue:=1/(1+alpha+beta):
mun:=alpha/(1+alpha+beta):
mud:=beta/(1+alpha+beta):
u0:=(mue+mun*gama)^(-1/2):

A1:=eval(A(x),[alpha=0.2,beta=0.3,gama=17]);
r:=solve(op([1,1],indets(A1,sqrt))>=0); # The domain of A1
plot(A1, x=-0.4..op(2,r), size=[800,400]);
fsolve(A1,x=-0.1..0.1); # The first root
fsolve(A1,x=0.1..op(2,r));  # The second root
fsolve(diff(A1,x),x=0.1..op(2,r));  # The root of first derivative

   

 

To investigate the dependence of the results on the parameters, see the  Explore command in the help.

restart;
int(tanh(x)/sqrt(x^2+1), x=1..100, numeric);

                                 4.344661055

You have taken too little value for numpoints  (n=100). Try

plot3d( [V,0], 0..2*Pi, 0..2*Pi, numpoints=40000);

 

Use the inert sum, that is  Sum  instead of  sum :

restart;
X := x->Sum((-1)^m*((1/2)*x)^(2*m+n)/(factorial(m)*factorial(m+n)), m = 0 .. infinity);
diff(X(x), x);  # The derivatives series
applyop((combine@expand),1,%,2*m+n); # Simplification

                       


Edit.

f:=x->sqrt(1+x);
(f@@6)(x);

 

restart;

Pbc:=proc(n::posint)
local Ind, Var1, Var2;
uses combinat;
Ind:=permute([0$n,1$n],n):
Var1:=[seq(x||i,i=0..n-1)]: Var2:=[seq(y||i,i=0..n-1)]:
{seq(seq(inner(Var1,ind1)*inner(Var2,ind2), ind1=Ind), ind2=Ind)};
end proc:

Examples of use (for n = 2 the result coincides with Carl's one):
Pbc(1);
Pbc(2);
Pbc(3);
             

There will be infinitely many such vectors. All of them belong to a plane perpendicular to the original vector. Therefore, the set of all solutions depends on two parameters:

restart;
PV:=(a,b,c)->solve(a*x+b*y+c*z=0,{x,y,z}):

# Examples of use:
V:=<1,2,3>;
PV(V[1],V[2],V[3]);
V1:=eval(<x,y,z>, %); # General solution
V.V1; # Check
V2:=eval(V1,[y=1,z=1]);  # One of the solutions

                            

Define functions as procedures, not expressions:

restart;
h:=x->1/(1+exp(-x));
hh:=(w,x,b)->ln(h(w*x + b));
diff(hh(w,x,b), w);  # Or  D[1](hh)(w,x,b);
normal(expand(%));

                         


I always refer to previous objects using their names or by  %  and so on.

Edit.

Here is a more traditional way:

restart;
IntegrationTools:-Change(int(arccos(x)*arcsin(x),x), x=sin(t));
eval(%, sin(t)=x);

          

 

 


 

restart;
b:=proc(n)
option remember;
  if n=0 then return 0 elif n=1 then return 1
  else
   (b(n-1)+b(n-2))/2:
  fi;
end proc:

# Examples of use: 

S:=seq(b(n),n=0..10);
plot([$ 0..10],[S]);

                


You can obtain an explicit formula for the nth member by  rsolve  command:

restart;
# The formula for nth term
rsolve({b(n)=(b(n-1)+b(n-2))/2,b(0)=0,b(1)=1}, b(n));

                       

seq1.mw
 

First 61 62 63 64 65 66 67 Last Page 63 of 291