Kitonum

21435 Reputation

26 Badges

17 years, 22 days

MaplePrimes Activity


These are Posts that have been published by Kitonum

The procedure  NumbersGame  generalizes the well-known 24 game  (implementation in Maple see here), as well as related issues (see here and here).

 

Required parameters of the procedure:

Result is an integer or a fraction of any sign.

Numbers is a list of positive integers.

 

Optional parameters:

Operators is a list of permitted arithmetic operations. By default  Operators is  ["+","-","*","/"]

NumbersOrder is a string. It is equal to "strict order" or "arbitrary order" . By default  NumbersOrder is "strict order"

Parentheses is a symbol  no  or  yes . By default  Parentheses is  no 

 

The procedure puts the signs of operations from the list  Operators  between the numbers from  Numbers  so that the result is equal to Result. The procedure finds all possible solutions. The global  M  saves the list of the all solutions.

 

Code the procedure:

restart;

NumbersGame:=proc(Result::{integer,fraction}, Numbers::list(posint), Operators::list:=["+","-","*","/"], NumbersOrder::string:="strict order", Parentheses::symbol:=no)

local MyHandler, It, K, i, P, S, n, s, L, c;

global M;

uses StringTools, ListTools, combinat; 

 MyHandler := proc(operator,operands,default_value)

      NumericStatus( division_by_zero = false );

      return infinity;

   end proc;

   NumericEventHandler(division_by_zero=MyHandler); 

if Parentheses=yes then 

It:=proc(L1,L2)

local i, j, L;

for i in L1 do

for j in L2 do

L[i,j]:=seq(Substitute(Substitute(Substitute("( i Op j )","i",convert(i,string)),"j",convert(j,string)),"Op",Operators[k]), k=1..nops(Operators));

od; od;

L:=convert(L, list);

end proc; 

P:=proc(L::list)

local n, K, i, M1, M2, S;

n:=nops(L);

if n=1 then return L else

for i to n-1 do

M1:=P(L[1..i]); M2:=P(L[i+1..n]);

K[i]:=seq(seq(It(M1[j], M2[k]), k=1..nops(M2)), j=1..nops(M1))

od; fi;

K:=convert(K,list);

end proc;

if NumbersOrder="arbitrary order" then S:=permute(Numbers); K:=[seq(op(Flatten([op(P(s))])), s=S)] else  K:=[op(Flatten([op(P(Numbers))]))] fi; 

else 

if NumbersOrder="strict order" then

K:=[convert(Numbers[1],string)];

for i in Numbers[2..-1] do

K:=[seq(seq(cat(k, Substitute(Substitute(" j i","j",convert(j,string)),"i",convert(i,string))), k in K), j in Operators)]

od;   else 

S:=permute(Numbers);

for s in S do

L:=[convert(s[1],string)];

for i in s[2..-1] do

L:=[seq(seq(cat(k, Substitute(Substitute(" j i","j",convert(j,string)),"i",convert(i,string))), k in L), j in Operators)]

od; K[s]:=op(L) od; K:=convert(K,list) fi;  

fi; 

M:='M'; c:=0;

for i in K do

if parse(i)=Result then c:=c+1; if Parentheses=yes then M[i]:= convert(SubString(i,2..length(i)-1),symbol)=convert(Result,symbol) else M[i]:=convert(i,symbol)=convert(Result,symbol) fi; fi;

od; 

if c=0 then M:=[]; return `No solutions` else M:=convert(M,list);  op(M) fi; 

end proc:

 

Examples of use.

 

Example 1:

NumbersGame(1/20, [$ 1..9]);

     1 * 2 - 3 + 4 / 5 / 6 * 7 / 8 * 9 = 1/20

 

Example 2. Numbers in the list  Numbers  may be repeated and permitted operations can be reduced:

NumbersGame(15, [3,3,5,5,5], ["+","-"]);

         3 - 3 + 5 + 5 + 5 = 15

 

Example 3. 

NumbersGame(10, [1,2,3,4,5]);

         1 + 2 + 3 * 4 - 5 = 10

If the order of the number in Numbers is arbitrary, then the number of solutions is greatly increased (10 solutions displayed):

NumbersGame(10, [1,2,3,4,5], "arbitrary order"):

nops(M);

for i to 10 do

M[1+50*(i-1)] od;

If you use the parentheses, the number of solutions will increase significantly more (10 solutions displayed):

NumbersGame(10, [1,2,3,4,5], "arbitrary order", yes):

nops(M);

for i to 10 do

M[1+600*(i-1)] od;

Game.mws

 

 

 

I learned about this problem from Aser's post   See  page of tasks still without  Maple implementation. 

The procedure  game24  solves the problem. In the procedure Acer's  procedure  MyHandler is  used, which prevents the program to stop in case of 0 in the denominator.

 

game24:=proc(a,b,c,d)

local MyHandler,It, K, M, i, P;

uses StringTools, combinat;

 MyHandler := proc(operator,operands,default_value)

      NumericStatus( division_by_zero = false );

      return infinity;

   end proc;

   NumericEventHandler(division_by_zero=MyHandler); 

It:=proc(L1,L2)

local i, j, L;

L:=[];

for i in L1 do

for j in L2 do

L:=[op(L), op([Substitute(Substitute("( i + j )","i",convert(i,string)),"j",convert(j,string)),Substitute(Substitute("( i - j )","i",convert(i,string)),"j",convert(j,string)),Substitute(Substitute("( i * j )","i",convert(i,string)),"j",convert(j,string)),Substitute(Substitute("( i / j )","i",convert(i,string)),"j",convert(j,string))])];

od; od;

L;

end proc; 

P:=permute([a,b,c,d]); 

K:=[];

for i in P do

K:=[op(K),op(It(It(It([i[1]],[i[2]]),[i[3]]),[i[4]])), op(It(It([i[1]],It([i[2]],[i[3]])),[i[4]])), op(It([i[1]],It(It([i[2]],[i[3]]),[i[4]]))), op(It([i[1]],It([i[2]],It([i[3]],[i[4]])))), op(It(It([i[1]],[i[2]]),It([i[3]],[i[4]])))];

od;

M:=[];

for i in K do

if parse(i)=24 then M:=[op(M), i] fi;

od;

if nops(M)=0 then return `No solutions` else

for i in M do

print(SubString(i,2..length(i)-1));

od; fi; 

end proc:

 

Two examples:

game24(2,3,8,9);

 

game24(2,3,3,4);

        No solutions

 

24.mws

 

 

In this post we present the solution with Maple to the logical problem of "Gardens Puzzle"

http://www.mathsisfun.com/puzzles/gardens-solution.html

The Puzzle:

Five friends have their gardens next to one another, where they grow three kinds of crops: fruits (apple, pear, nut, cherry), vegetables (carrot, parsley, gourd, onion) and flowers (aster, rose, tulip, lily).

1. They grow 12 different varieties.
2. Everybody grows exactly 4 different varieties
3. Each variety is at least in one garden.
4. Only one variety is in 4 gardens.
5. Only in one garden are all 3 kinds of crops.
6. Only in one garden are all 4 varieties of one kind of crops.
7. Pear is only in the two border gardens.
8. Paul's garden is in the middle with no lily.
9. Aster grower doesn't grow vegetables.
10. Rose growers don't grow parsley.
11. Nuts grower has also gourd and parsley.
12. In the first garden are apples and cherries.
13. Only in two gardens are cherries.
14. Sam has onions and cherries.
15. Luke grows exactly two kinds of fruit.
16. Tulip is only in two gardens.
17. Apple is in a single garden.
18. Only in one garden next to Zick's is parsley.
19. Sam's garden is not on the border.
20. Hank grows neither vegetables nor asters.
21. Paul has exactly three kinds of vegetable.

Who has which garden and what is grown where?

 

About methods of solution. At first I just wanted to generate all variations and using conditions 1 .. 21 to find all solutions. But even if we use the condition that everybody grows exactly 4 different varieties then the total number variants equals  5!^2*binomial(12,4)^5=427945522455000000

So from the very beginning using some of the conditions 1 .. 21 we maximally reduce the number of possible variants. For example from the conditions 11, 18 and 6 implies that only in one garden are all 4 varieties of flowers. Next we pass through these variants and using conditions 1 .. 21 and finally come to a unique solution:

restart;

Fruits:={apple, pear, nut, cherry}:

Vegetables:={carrot, parsley, gourd, onion}:

Flowers:={aster, rose, tulip, lily}:

 

Set1:=Flowers:

Garden1:={Set1}:

Set2:=Fruits union Vegetables union Flowers minus {nut,gourd,parsley} minus {apple,cherry,rose}:

Garden2:={seq({nut,gourd,parsley} union {Set2[i]}, i=1..nops(Set2))}:

Set3:=Vegetables union Flowers minus {parsley}:

Garden3:={seq({apple,cherry,pear} union {Set3[i]}, i=1..nops(Set3))}:

Set4:=combinat[choose](Fruits union Vegetables union Flowers minus {onion,cherry} minus {apple,parsley,pear,nut}, 2):

Garden4:={seq({onion,cherry} union Set4[i], i=1..nops(Set4))}:

Set5:=Fruits union Vegetables union Flowers minus {apple, cherry,nut,parsley}:

Garden5:=combinat[choose](Set5, 4):

 

S:=[]:

for s1 in Garden1 do

for s2 in Garden2 do

for s3 in Garden3 do

for s4 in Garden4 do

for s5 in Garden5 do

s:=[s1,s2,s3,s4,s5]: s_4:=combinat[choose](s,4): m:=0: n:=0: k:=0: p:=0: q:=0:

for i in s do

if `intersect`(i,Fruits)<>{} and `intersect`(i,Vegetables)<>{} and `intersect`(i,Flowers)<>{} then m:=m+1: fi:

if pear in i then n:=n+1: fi:

if tulip in i then k:=k+1: fi:

if aster in i and `intersect`(i,Vegetables)<>{} then p:=p+1: fi:

if i=Fruits or i=Vegetables or i=Flowers then q:=q+1: fi:

od:

if nops(`union`(op(s)))=12 and nops(`union`(seq(`intersect`(op(s_4[j])), j=1..nops(s_4))))=1 and m=1 and n=2 and k=2 and p=0 and q=1 then S:=[op(S),[s1,s2,s3,s4,s5]]: fi:

od: od: od: od: od:

 

L1:=[seq([[3,Paul],[2,Sam],seq([combinat[permute]([1,4,5])[i,j],[Luke,Zick,Hank][j]],j=1..3)],i=1..6)]:

L2:=[seq([[3,Paul],[4,Sam],seq([combinat[permute]([1,2,5])[i,j],[Luke,Zick,Hank][j]],j=1..3)],i=1..6)]:

L0:=[op(L1),op(L2)]:

L:=[seq(op(combinat[permute](L0[i])),i=1..nops(L0))]:

Sol:=[]:

for l in L do

for s in S do

sol:=[seq([op(l[i]),s[i]], i=1..5)]:

gad1:=op(select(has,sol,parsley)): gad2:=op(select(has,sol,Zick)):

if abs(gad1[1]-gad2[1])=1 and convert([seq(((pear in sol[i][3] implies (sol[i][1]=1 or sol[i][1]=5)) and (sol[i][2]=Paul implies (not lily in sol[i][3])) and (sol[i][1]=1 implies (apple in sol[i][3] and cherry in sol[i][3])) and (sol[i][2]=Sam implies (onion in sol[i][3] and cherry in sol[i][3])) and (sol[i][2]=Luke implies nops(`intersect`(sol[i][3],Fruits))=2) and (sol[i][2]=Hank implies (`intersect`(sol[i][3],Vegetables)={} and not aster in sol[i][3])) and (sol[i][2]=Paul implies nops(`intersect`(sol[i][3],Vegetables))=3)), i=1..5)], `and`) then Sol:=[op(Sol), sol]: fi:

 

od: od:

for i in Sol do

Matrix(sort(i,(x,y)->x[1]<y[1]));

od;

 

 

In this post we present another compact proof of this remarkable theorem without using  geometry package.
The proof uses a procedure called  Cc , which for three points returns a list of the coordinates of the center and the radius of the circumscribed circle.

restart;

Cc:=proc(A,B,C)

local x1, y1, x2, y2, x3, y3, x, y;

x1,y1:=op(A);  x2,y2:=op(B);  x3,y3:=op(C);

solve({(x2-x1)*(x-(x1+x2)/2)+(y2-y1)*(y-(y1+y2)/2)=0, (x2-x3)*(x-(x2+x3)/2)+(y2-y3)*(y-(y2+y3)/2)=0},{x,y});

assign(%);

[simplify([x,y]), simplify(sqrt((x-x1)^2+(y-y1)^2))];

end proc:

Proof for arbitrary triangle:

A, B, C:=[x1,y1], [x2,y2], [x3,y3]:

A1, B1, C1, M:=(B+C)/2, (A+C)/2, (A+B)/2, (A+B+C)/3:

P1:=Cc(A,M,B1)[1]: P2:=Cc(B1,M,C)[1]: P3:=Cc(C,M,A1)[1]:

P4:=Cc(A1,M,B)[1]: P5:=Cc(B,M,C1)[1]: P6:=Cc(C1,M,A)[1]:

Cc1:=Cc(P1,P2,P3):  Cc2:=Cc(P4,P5,P6):

is(Cc1=Cc2);

                                                  true

 

Code of the animation:

restart;

N := 192:

A := seq(plot([[.85*sin(t)^3-2+1.25*i/N, .85*(13*cos(t)*(1/15)-(1/3)*cos(2*t)-2*cos(3*t)*(1/15)-(1/15)*cos(4*t)), t = 0 .. Pi*i/N], [-.85*sin(t)^3-2+1.25*i/N, .85*(13*cos(t)*(1/15)-(1/3)*cos(2*t)-2*cos(3*t)*(1/15)-(1/15)*cos(4*t)), t = 0 .. Pi*i/N], [sin(t)^3+2-1.25*i/N, 13*cos(t)*(1/15)-(1/3)*cos(2*t)-2*cos(3*t)*(1/15)-(1/15)*cos(4*t), t = 0 .. Pi*i/N], [-sin(t)^3+2-1.25*i/N, 13*cos(t)*(1/15)-(1/3)*cos(2*t)-2*cos(3*t)*(1/15)-(1/15)*cos(4*t), t = 0 .. Pi*i/N]], color = red, thickness = 5, view = [-3 .. 3, -1.2 .. .9]), i = 1 .. N):

plots[display](A, insequence = true, scaling = constrained, axes = none);

First 6 7 8 9 10 11 12 Page 8 of 12