LeeHoYeung

Mr. Ho Yeung Lee

535 Reputation

10 Badges

12 years, 235 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Welcome August, February, July, May born girl And waited for her email to mavio@protonmail.com

MaplePrimes Activity


These are questions asked by LeeHoYeung

 from permutation group to permutation group and inverse this mapping?

how to do?

separable form should be (x - something in terms of x1,x2,x3,x4)*(x- something in terms of x1,x2,x3,x4)*(x -something in terms of x1,x2,x3,x4 )*(x - something in terms of x1,x2,x3,x4)

factor(f, x);
Error, (in factor) 2nd argument, x, is not a valid algebraic extension

how to factor into separable form?

 

ferrai := -x1^3*x2*x3*x4-x1^2*x2^2*x3^2-x1^2*x2^2*x4^2-x1^2*x3^2*x4^2-x1*x2^3*x3*x4-x1*x2*x3^3*x4-x1*x2*x3*x4^3-x2^2*x3^2*x4^2+x1^2*x2*x3*y+x1^2*x2*x4*y+x1^2*x3*x4*y+x1*x2^2*x3*y+x1*x2^2*x4*y+x1*x2*x3^2*y+x1*x2*x4^2*y+x1*x3^2*x4*y+x1*x3*x4^2*y+x2^2*x3*x4*y+x2*x3^2*x4*y+x2*x3*x4^2*y-x1*x2*y^2-x1*x3*y^2-x1*x4*y^2-x2*x3*y^2-x2*x4*y^2-x3*x4*y^2+y^3;
coeff(ferrai, y^3);
coeff(ferrai, y^2);
coeff(ferrai, y);
res := simplify(ferrai - coeff(ferrai, y^3)*y^3 - coeff(ferrai, y^2)*y^2 - coeff(ferrai, y)*y);

c2 := -coeff(ferrai, y^2)/coeff(ferrai, y^3);
sys1 := c1*c3 - 4*c4 = coeff(ferrai, y)/coeff(ferrai, y^3);
sys2 := -c3^2-(c1^2)*c4+4*c2*c4 = res/coeff(ferrai, y^3);

diff(lhs(sys1),c1) = diff(rhs(sys1),c1);
diff(lhs(sys1),c3) = diff(rhs(sys1),c3);
diff(lhs(sys1),c4) = diff(rhs(sys1),c4);

diff(lhs(sys2),c1) = diff(rhs(sys2),c1);
diff(lhs(sys2),c3) = diff(rhs(sys2),c3);
diff(lhs(sys2),c4) = diff(rhs(sys2),c4);

c1sol := solve(diff(lhs(sys2),c4) = diff(rhs(sys2),c4), c1)[1];
indets(subs(c1=c1sol,sys1));
indets(subs(c1=c1sol,sys2));
indets([subs(c1 = c1sol, sys1), subs(c1 = c1sol, sys2)]);
result := solve({subs(c1 = c1sol, sys1), subs(c1 = c1sol, sys2)},{c3,c4}, explicit);

c1sol := solve(diff(lhs(sys2),c4) = diff(rhs(sys2),c4), c1)[1];
c2sol := -coeff(ferrai, y^2)/coeff(ferrai, y^3);
c3sol := rhs(result[1][1]);
c4sol := rhs(result[1][2]);
f := x^4-c1sol*x^3+c2sol*x^2-c3sol*x+c4sol;
aa := factor(f);
aa := factor(f,x);

f := x^4-c1*x^3+c2*x^2-c3*x+c4;

restart;
ferrai := -x1^3*x2*x3*x4-x1^2*x2^2*x3^2-x1^2*x2^2*x4^2-x1^2*x3^2*x4^2-x1*x2^3*x3*x4-x1*x2*x3^3*x4-x1*x2*x3*x4^3-x2^2*x3^2*x4^2+x1^2*x2*x3*y+x1^2*x2*x4*y+x1^2*x3*x4*y+x1*x2^2*x3*y+x1*x2^2*x4*y+x1*x2*x3^2*y+x1*x2*x4^2*y+x1*x3^2*x4*y+x1*x3*x4^2*y+x2^2*x3*x4*y+x2*x3^2*x4*y+x2*x3*x4^2*y-x1*x2*y^2-x1*x3*y^2-x1*x4*y^2-x2*x3*y^2-x2*x4*y^2-x3*x4*y^2+y^3;
coeff(ferrai, y^3);
coeff(ferrai, y^2);
coeff(ferrai, y);
res := ferrai - coeff(ferrai, y^3)*y^3 - coeff(ferrai, y^2)*y^2 - coeff(ferrai, y)*y;

c2 := -coeff(ferrai, y^2)/coeff(ferrai, y^3);
sys1 := c1*c3 - 4*c4 = coeff(ferrai, y)/coeff(ferrai, y^3);
sys2 := -c3^2-(c1^2)*c4+4*c2*c4 = res;
solve([sys1, sys2],[c1,c3,c4]);

number of equations is not enough, is it possible to find back c1,c3,c4?

though c2 is easy to know

assume not starting from resolvent of quartic,

how to find [[1,2],[3,4]] and [[1,3],[2,4]] and [[1,4],[2,3]] ?

a1*a2 + a3*a4 if [[1,3,2,4],[1,2]]

a1*a3 + a2*a4 if [2,3][[1,3,2,4],[1,2]]

a1*a4 + a2*a3 if [2,4],[[1,3,2,4],[1,2]]

moreover, i use multiplication of permutation group can not multiply below

though i know how to operate multiplication by hand, i follow the syntax to do multiplication, seems not the way

with(group):
mulperms([[2,3]], [[1,3,2,4],[1,2]]);
mulperms([[1,3,2,4],[1,2]], [[2,3]]);

mulperms([2,3], [[1,3,2,4],[1,2]]);
mulperms([[1,3,2,4],[1,2]], [2,3]);

 

how to find [[1,3,2,4],[1,2]] and [2,3][[1,3,2,4],[1,2]] and [2,4],[[1,3,2,4],[1,2]]?

and why Orbits(G) put permutation group into power, how to display the result of this power group?

i use this or quartic polynomials' resolvent

with(GroupTheory):
G := SpecialUnitaryGroup(3, 1);
Orbits(G);
Orbit(1,G);
Orbit(3,G);

First 57 58 59 60 61 62 63 Last Page 59 of 141