LeeHoYeung

Mr. Ho Yeung Lee

535 Reputation

10 Badges

12 years, 240 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Welcome August, February, July, May born girl And waited for her email to mavio@protonmail.com

MaplePrimes Activity


These are questions asked by LeeHoYeung

got an error when try to jacobian this

with(VectorCalculus):
f1 := -2*x1-x2; f2 := -x1-4*x2; g1 := 2*x1+3*x2-6; g2 := -x1; g3 := -x2;
penalty := lambda1*max(f1-M,0) + lambda2*max(f2-M,0) + (M^2)*(max(g1,0) + max(g2,0) + max(g3,0)):
obj := eval(penalty,[lambda1=3,lambda2=0.645,M=1]);
Hf := Jacobian(Jacobian(obj, [x1, x2, x3]), [x1, x2, x3]);

Error, invalid input: VectorCalculus:-Jacobian expects its 1st argument, f,
to be of type {Vector(algebraic), list(algebraic)}, but received 3*max(0, -2*x1-x2-1)+.645*max(0, -x1-4*x2-1)+max(0, 2*x1+3*x2-6)+max(0, -x1)+max(0, -x2)

 

convert(50, base, 12);

this can change base for integer, however can not change decimal

assume i change decimal to fraction first and then apply convert base to 12 to numer and denom, and divide again to get decimal

it may get a decimal based on base 12

however, how to make this base 12 operation apply in linear algebra calculation

if not using

EigenvectorSol := simplify(solve({seq(seq((NewMatrix3 . NewInput3(1..-1,i))[j]=(v[i]* NewInput3(1..-1,i))[j], j=1..3), i=1..3)}, {seq(x||i, i=1..9)}));

and if want to see clearly the steps about how to solve for eignvector, how to do?

because i use solve, it has error

InputMatrix3 := Matrix([[31.25,30.8,30.5],[30.8,30.5,0],[30.5,0,0]]);

NewInput3 := MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3);

FirstEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[1]; # find back eigenvalue from eigenvector

SecondEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[2]; # find back eigenvalue from eigenvector

ThirdEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[3]; # find back eigenvalue from eigenvector

v:=[ FirstEigenValue, SecondEigenValue, ThirdEigenValue];

NewMatrix3 := Matrix([[x1,x2,x3], [x4,x5,x6], [x7,x8,x9]]);

EigenvectorSol := simplify(solve({seq(seq((NewMatrix3 . NewInput3(1..-1,i))[j]=(v[i]* NewInput3(1..-1,i))[j], j=1..3), i=1..3)}, {seq(x||i, i=1..9)}));

EigenvectorT := Matrix([[rhs(EigenvectorSol[1]), rhs(EigenvectorSol[2]), rhs(EigenvectorSol[3])],[ rhs(EigenvectorSol[4]), rhs(EigenvectorSol[5]), rhs(EigenvectorSol[6])],[ rhs(EigenvectorSol[7]), rhs(EigenvectorSol[8]), rhs(EigenvectorSol[9])]]);

Old_Asso_eigenvector := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3));

 

sys1:=MatrixMatrixMultiply(NewInput3-Matrix([[FirstEigenValue, 0, 0], [0, FirstEigenValue, 0], [0, 0, FirstEigenValue]]),Matrix([[x],[y],[z]]));

sys1a := NewInput3-Matrix([[FirstEigenValue, 0, 0], [0, FirstEigenValue, 0], [0, 0, FirstEigenValue]]);

 

fsolve({sys1[1][1]=0,sys1[2][1]=0,sys1[3][1]=0}, {x,y,z});

solve([sys1[1][1]=0,sys1[2][1]=0,sys1[3][1]=0], [x,y,z]);

solve([sys1[1]=0,sys1[2]=0,sys1[3]=0], [x,y,z]);

> solve([sys1[1] = 0, sys1[2] = 0, sys1[3] = 0], [x, y, z]);

Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({set, list})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received [(Vector[row](1, {(1) = HFloat(2571.1332294000003)*x+HFloat(1901.9)*y+HFloat(953.125)*z})) = 0, (Vector[row](1, {(1) = HFloat(1901.9)*x+HFloat(1594.5707294000001)*y+HFloat(939.4)*z})) = 0, (Vector[row](1, {(1) = HFloat(953.125)*x+HFloat(939.4)*y+HFloat(645.9307294)*z})) = 0]

 

 

v1 := <sys1a[1,1] | sys1a[1,2] | sys1a[1,3]>;

v2 := <sys1a[2,1] | sys1a[2,2] | sys1a[2,3]>;

v3 := <sys1a[3,1] | sys1a[3,2] | sys1a[3,3]>;

 

v1 := <sys1a[1,1] | sys1a[2,1] | sys1a[3,1]>;

v2 := <sys1a[1,2] | sys1a[2,2] | sys1a[3,2]>;

v3 := <sys1a[1,3] | sys1a[2,3] | sys1a[3,3]>;

eigenvector1 := Basis([v1, v2, v2]);

eliminate({sys1[1][1]=0,sys1[2][1]=0,sys1[3][1]=0},{x,y,z});

eliminate({sys1[1][1]=0,sys1[1][2]=0,sys1[1][3]=0},{x,y,z});

 

sys1:=MatrixMatrixMultiply(NewInput3-Matrix([[SecondEigenValue, 0, 0], [0, SecondEigenValue, 0], [0, 0, SecondEigenValue]]),Matrix([[x],[y],[z]]));

solve([sys1[1][1]=0,sys1[2][1]=0,sys1[3][1]=0], [x,y,z]);

sys1:=MatrixMatrixMultiply(NewInput3-Matrix([[ThirdEigenValue, 0, 0], [0, ThirdEigenValue, 0], [0, 0, ThirdEigenValue]]),Matrix([[x],[y],[z]]));

solve([sys1[1][1]=0,sys1[2][1]=0,sys1[3][1]=0], [x,y,z]);

 

https://drive.google.com/file/d/0B2D69u2pweEvUDJIeGlOVjFvNWc/edit?usp=sharing
https://drive.google.com/file/d/0B2D69u2pweEvV1BiRXhULTNPcWM/edit?usp=sharing
https://drive.google.com/file/d/0B2D69u2pweEvdXNrRlNadldXS0U/edit?usp=sharing

i find that maple 15 values are the same as extreme optimization library however, the sign are different

is it maple 15 accuracy correct or extreme library correct?

https://drive.google.com/file/d/0B2D69u2pweEvT01pazBxOEk1bWc/edit?usp=sharing

i worry for my research whether based on correct accuracy.

 

it can run without error in maple 15, however, the eigenvector values are wrong in maple 15 different from eigenvector function's result

then i test it in maple 12, it got error when run with following input

Warning, solutions may have been lost
Error, invalid input: simplify uses a 1st argument, s, which is missing
> InputMatrix3;
                           [[30.15,29.95,29.95],[29.95,29.95,0],[29.95,0,0]]

NewInput3 := MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3);
FirstEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[1]; # find back eigenvalue from eigenvector
SecondEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[2]; # find back eigenvalue from eigenvector
ThirdEigenValue := solve(Determinant(NewInput3-Matrix([[lambda1, 0, 0], [0, lambda1, 0], [0, 0, lambda1]])), lambda1)[3]; # find back eigenvalue from eigenvector
v:=[ FirstEigenValue, SecondEigenValue, ThirdEigenValue];
NewMatrix3 := Matrix([[x1,x2,x3], [x4,x5,x6], [x7,x8,x9]]);
EigenvectorSol := simplify(solve({seq(seq((NewMatrix3 . NewInput3(1..-1,i))[j]=(v[i]* NewInput3(1..-1,i))[j], j=1..3), i=1..3)}, {seq(x||i, i=1..9)}));
EigenvectorT := Matrix([[rhs(EigenvectorSol[1]), rhs(EigenvectorSol[2]), rhs(EigenvectorSol[3])],[ rhs(EigenvectorSol[4]), rhs(EigenvectorSol[5]), rhs(EigenvectorSol[6])],[ rhs(EigenvectorSol[7]), rhs(EigenvectorSol[8]), rhs(EigenvectorSol[9])]]);
Old_Asso_eigenvector := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3));

f1 := expand((a1*x^2+b1*x+c1)^n);
f2 := a1*x^2+b1*x+c1;

solve([coeff(f1, x, 4) = coeff(f2, x, 4),
coeff(f1, x, 3) = coeff(f2, x, 3),
coeff(f1, x, 2) = coeff(f2, x, 2),
coeff(f1, x, 1) = coeff(f2, x, 1),
coeff(f1, x, 0) = coeff(f2, x, 0)], [a1,b1,c1,d1]);

First 89 90 91 92 93 94 95 Last Page 91 of 141