Teep

200 Reputation

5 Badges

17 years, 106 days

MaplePrimes Activity


These are questions asked by Teep

Good day.

Using the iterative map routine, the location of the bifurcation points of the logistic function can be determined using the plot (see attached).

I was wondering .. is it possible to estimate and output the locations of these points and the range of the function? I would like to explore the bifurcation behavior for the modified function so, this would be a great help. 

In this case, the location of the points are: (1.00,0.00), (3.00, 0.66), (3.45, 0.44), (3.45, 0.85) and the range is [0,4]. 

Thanks for reading!

MaplePrimes_Oct_16.mw

Good day.

I am looking into the behaviour of a function, V, that depends on several parameter values; these values are fixed in the attached example. However, I have encountered an issue that is puzzling me and I was hoping that someone may be able to shine a light on this for me.

Basically,  I would like to understand how the solution, V, behaves as the value of exponent, beta, approaches infinity.

Straightforward analysis suggests that the value of V tends to -10 as beta grows infinitely large (s -> C, and beta ->infinity and so, V -> -10 ... so far, so good).

However, when the function is plotted, the solution seems to converge to a value, 6.5, as beta tends to a very large number (10^17).

Now .. here's the mystery .. there appears to be a critical value of around 7.854 x 10^17; here, the limit seems to switch from V=6.5 to -10. Does this phenomenon correspond to a discontinuity or is it related to the computational process? Are there any built-in routines in Maple to check for such potential conditions?

Thanks for reading!

MaplePrimes_Sep_19.mw

Good day.

I am constructing a 4-set Venn Diagram and I would like to know if it is possible to fix the number of decimal places in the solution.

The attached worksheet is given as an example; the default number of decimal places seems to be 2. I would like this to be either 0 or 1 (for both absolute and relative values). 

Does anyone know how to do this? 

Thanks for reading!

MaplePrimes_Venn_Diagram.mw

Good afternoon.

I have a differential equation of non-integer degree and would like to know if it is possible to express a solution in terms of elementary or special-functions for certain values of the exponent, n>0.

For this equation, Maple provides an analytical solution for the exponent values n=0 and n=1, otherwise, there is no solution returned. I am particularly interested in the cases where n=1/2, 3/2, 2, 5/2, and 3

I am hoping that someone can help me resolve this - if a closed-form solution is not possible, then a numerical solution would also be welcome.

I have provided the details in the attached worksheet.

Thanks for reading!

MaplePrimes_Dec_19.mw

Hi. 

I am trying to solve a polynomial equation but the structure leads Maple to return a trivial solution and the other solutions are given as a RootOf expression. The equation involves a single variable, x, that is raised to a power, b and a multiplier, a (both are positive-valued). Please see attached worksheet.

I have not encountered this before and I cannot find a way to get to an explicit solution. Perhaps it is not possible (?).

Does anybody know how to deal with this? 

Thanks in advance ...

Roots_of_a_Polynomial_MaplePrimes.mw 

1 2 3 4 5 6 7 Last Page 1 of 13