garethclifford

10 Reputation

One Badge

7 years, 125 days

MaplePrimes Activity


These are questions asked by garethclifford

Hi guys, 

I need help with differentiating a function I have defined. Here is the function I have:

The right hand side of this expression is a solution I have previously found via Maple, I know that this is correct. Basically I have a function a that is dependent on the another functon u(x,y,t).

Now the way I have defined this gives me the RHS of the above equation which is what I want. However, what I now need to do is to show that this constant function _F1(x,y,t) is equal to zero. I know this to be true via hand calcuations, but to do so I need to sub it into another equation where it has the derivatives of a. The way the derivatives are defined is through the D function. But this doesn't seem to work with how I have defined the function previously.

D[1](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t)) 

This should give me 

-4*diff(u(x,y,t),x,x,x)+diff(_F1(x,y,t),x)
However it just repeats what I input. I have tried defining the function in a different way,

a:=(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t)) ->-4*diff(u(x,y,t),x,x)+_F1(x,y,t)

However this returns an error where I am not allowed to define this.

Can anyone help, would be a massive help. Thanks in advance.

Hi guys, I am trying to solve a system of differential equations, I have done the hand written calculations and I know the answer however I need to put it in a maple code for a generic system which I will work on over time. Here is what I have so far, 

restart;

eqn[1]:=-1/8*D[4](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))=0;

eqn[2]:=-1/8*D[5](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))=0;

eqn[3]:=-1/8*D[6](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))=0;

eqn[4]:=-1/8*D[7](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))=0;

eqn[5]:=-1/8*D[8](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))=0;

eqn[6]:=-1/8*D[9](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))=0;

eqn[7]:=-1/8*D[10](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))=0;

eqn[8]:=-1/8*D[11](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))-1/2=0;

eqn[9]:=-1/8*D[12](a)(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))=0;

dsolve({seq(eqn[i],i=1..9)},a(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t)));

Then I get an error return which says:

Error, (in dsolve) too many arguments; some or all of the following are wrong: [{u(x, y, t)}, a(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(diff(u(x, y, t), x), x), diff(diff(u(x, y, t), x), y), diff(diff(u(x, y, t), t), x), diff(diff(u(x, y, t), t), y), diff(diff(u(x, y, t), t), t))].

 

I know that if I replace u(x,y,t) with a dummy variable U, and its derivative with Ux,Uy,... and so on then it will work, but I need the function u(x,y,t) to be part of the solution.

I know the solution should give me:

a(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(diff(u(x, y, t), x), x), diff(diff(u(x, y, t), x), y), diff(diff(u(x, y, t), t), x), diff(diff(u(x, y, t), t), y), diff(diff(u(x, y, t), t), t)) = -4*diff(u(x,y,t),x,x) + F(x,y,t),

where F(x,y,t) is the constant function.

Please any help would be great!!
 

hi, i am trying to get a list of equations using the coeff function. I have the following equation:

restart;
Lambda:=-(1/8)*(D[4](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), x))-(1/8)*(D[6](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), y, x))-(1/8)*(D[7](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), x, t))-(1/8)*(D[5](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), x, x))-(1/8)*(D[12](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), x, t, t))-(1/8)*(D[10](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), x, x, t))-(1/8)*(D[11](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), y, x, t))-(1/8)*(D[9](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), y, x, x))+(1/8*(-3*(D[8](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))-4))*(diff(u(x, y, t), x, x, x))-(1/8)*(D[1](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))+(1/4)*(D[8](a))(x, y, t, u(x, y, t), diff(u(x, y, t), x), diff(u(x, y, t), y), diff(u(x, y, t), t), diff(u(x, y, t), x, x), diff(u(x, y, t), y, x), diff(u(x, y, t), x, t), diff(u(x, y, t), y, t), diff(u(x, y, t), t, t))*(diff(u(x, y, t), x, x, x));

Now I am trying to get the coefficients of the derivatives of u(x,y,t). So by hand I have done the calculation of taking the coeffient of diff(u(x,y,t),x,x,x) and setting this equal to zero, and then the coefficient of diff(u(x,y,t),x,x,t) and so on. However when I use the coeff function, it will only allow me to compute the coeff of diff(u(x,y,t),x,x,x) and others of third order. However it will not let me use the deriviateves of u of second and first order.

coeff(Lambda,diff(u(x,y,t),x));

this will not work but 

coeff(Lambda,diff(u(x,y,t),x,x,x));

will work.

Any help would be great thanks.


 

Page 1 of 1