nm

11538 Reputation

20 Badges

13 years, 114 days

MaplePrimes Activity


These are questions asked by nm

Is this documented somewhere?  Why Maple do not return 0 from odetest after expanding the solution?

update: added additional tries to simplify it to zero as suggested but they do not give zero.

ode:=2*x^(1/2)*diff(y(x),x) = (1-y(x)^2)^(1/2);
sol:=dsolve(ode);

2*x^(1/2)*(diff(y(x), x)) = (1-y(x)^2)^(1/2)

y(x) = sin(x^(1/2)+(1/2)*_C1)

odetest(sol,ode);

0

res:=odetest(expand(sol),ode);

cos(x^(1/2)+(1/2)*_C1)-(1/2)*(2*cos(2*x^(1/2)+_C1)+2)^(1/2)

simplify(res)

cos(x^(1/2)+(1/2)*_C1)-(1/2)*(2*cos(2*x^(1/2)+_C1)+2)^(1/2)

simplify(res,symbolic)

cos(x^(1/2)+(1/2)*_C1)-(1/2)*(2*cos(2*x^(1/2)+_C1)+2)^(1/2)

simplify(res,trig)

cos(x^(1/2)+(1/2)*_C1)-(1/2)*(2*cos(2*x^(1/2)+_C1)+2)^(1/2)

combine(res)

cos(x^(1/2)+(1/2)*_C1)-(1/2)*(2*cos(2*x^(1/2)+_C1)+2)^(1/2)

combine(res,trig)

cos(x^(1/2)+(1/2)*_C1)-(1/2)*(2*cos(2*x^(1/2)+_C1)+2)^(1/2)

expand(res)

cos(x^(1/2))*cos((1/2)*_C1)-sin(x^(1/2))*sin((1/2)*_C1)-(1/2)*(4*cos(_C1)*cos(x^(1/2))^2-2*cos(_C1)-4*sin(_C1)*sin(x^(1/2))*cos(x^(1/2))+2)^(1/2)

simplify(expand(res))

cos(x^(1/2))*cos((1/2)*_C1)-sin(x^(1/2))*sin((1/2)*_C1)-(1/2)*(4*cos(_C1)*cos(x^(1/2))^2-2*cos(_C1)-4*sin(_C1)*sin(x^(1/2))*cos(x^(1/2))+2)^(1/2)

simplify(expand(res),symbolic)

cos(x^(1/2))*cos((1/2)*_C1)-sin(x^(1/2))*sin((1/2)*_C1)-(1/2)*(4*cos(_C1)*cos(x^(1/2))^2-2*cos(_C1)-4*sin(_C1)*sin(x^(1/2))*cos(x^(1/2))+2)^(1/2)

simplify(expand(res),trig)

cos(x^(1/2))*cos((1/2)*_C1)-sin(x^(1/2))*sin((1/2)*_C1)-(1/2)*(4*cos(_C1)*cos(x^(1/2))^2-2*cos(_C1)-4*sin(_C1)*sin(x^(1/2))*cos(x^(1/2))+2)^(1/2)

simplify(expand(res),size)

cos(x^(1/2))*cos((1/2)*_C1)-sin(x^(1/2))*sin((1/2)*_C1)-(1/2)*(4*cos(_C1)*cos(x^(1/2))^2-2*cos(_C1)-4*sin(_C1)*sin(x^(1/2))*cos(x^(1/2))+2)^(1/2)

 

 

Download odetest_q.mw

Why Maple returns -1/x as singular solution below when this solution can be obtained from the general solution when constant of integration is zero?

restart;

ode:=2*y(x)+2*x*y(x)^2+(2*x+2*x^2*y(x))*diff(y(x),x) = 0;
dsolve(ode,singsol=false);

2*y(x)+2*x*y(x)^2+(2*x+2*x^2*y(x))*(diff(y(x), x)) = 0

y(x) = (-1-_C1)/x, y(x) = (-1+_C1)/x

sol:=[dsolve(ode,singsol=essential)];

[y(x) = -1/x, y(x) = (-1-_C1)/x, y(x) = (-1+_C1)/x]

subs(_C1=0,sol)

[y(x) = -1/x, y(x) = -1/x, y(x) = -1/x]

 


Download essential.mw

We all know that Maple's Latex is not the best of Maple to say the least.

But this one is really strange. Maple prints a `1` for no apparant reason in the latex which makes it ugly. 

I wonder if Maplesoft still maintains its Latex conversion code at all?  So one can at least hope may be one day all of this will get fixed? Year after year, and Maple's Latex still not changed.  

If Mapesoft do not intend to make any changes in its Latex conversion software at all, it will be good if an official statement is made in this regards so that at least customers know.

sol:=dsolve((x-a)*(x-b)*diff(y(x),x)+k*(y(x)-a)*(y(x)-b) = 0,y(x)):
sol:=subs(_C1=C[1],sol);

y(x) = ((x-b)^(-k)*(x-a)^k*a*exp(a*k*C[1]-b*k*C[1])-(x-b)^(-k)*(x-a)^k*b*exp(a*k*C[1]-b*k*C[1])+b*((-x+b)/(-x+a))^(-k)*exp(a*k*C[1]-b*k*C[1])-b)/(-1+((-x+b)/(-x+a))^(-k)*exp(a*k*C[1]-b*k*C[1]))

latex(sol)

y \left( x \right) ={1 \left(  \left( x-b \right) ^{-k} \left( x-a
 \right) ^{k}a{{\rm e}^{akC_{{1}}-bkC_{{1}}}}- \left( x-b \right) ^{-k
} \left( x-a \right) ^{k}b{{\rm e}^{akC_{{1}}-bkC_{{1}}}}+b \left( {
\frac {-x+b}{-x+a}} \right) ^{-k}{{\rm e}^{akC_{{1}}-bkC_{{1}}}}-b

 \right)  \left( -1+ \left( {\frac {-x+b}{-x+a}} \right) ^{-k}{{\rm e}
^{akC_{{1}}-bkC_{{1}}}} \right) ^{-1}}

 

 

Download why_1_in_latex.mw

 

Why odetest sometimes fail to give 0  from odetest when simply using C[1] instead of _C1 as constant of integration?

I do not remember now if I asked about this before now. But for me as a user, this does not look right. I like to use C[1] instead of _C1 as the constant of integration as it looks better in Latex. I had no idea it will make a difference to odetest what the constant of integration symbol used is.

Is this a known issue? Do you consider this a bug? Maple 2019.1 on windows 10.

restart;

ode:= x^2*diff(y(x),x)+x*y(x)+sqrt(y(x)) = 0;

x^2*(diff(y(x), x))+x*y(x)+y(x)^(1/2) = 0

sol_1:=sqrt(y(x))=1/x+_C1/sqrt(x);
odetest(sol_1,ode)

y(x)^(1/2) = 1/x+_C1/x^(1/2)

0

sol_2:=subs(_C1=C[1],sol_1);
odetest(sol_2,ode); #why this now fails??

y(x)^(1/2) = 1/x+C[1]/x^(1/2)

-y(x)^(1/2)-y(x)^(1/2)*x^(1/2)*C[1]+x*y(x)

sol_3:=subs(C[1]=_C1,sol_2);
odetest(sol_3,ode)

y(x)^(1/2) = 1/x+_C1/x^(1/2)

0

 

Download why_odetest_fail.mw

A=B  but not able to simplify arctanh(A)-arctanh(B)  to be zero.  Why? Is there a workaround? Using Maple 2019.1

restart;

A:=((y*sqrt(3) + 3)*sqrt(3))/(6*sqrt(y^2 + 1));
B:=(y + sqrt(3))/(2*sqrt(y^2 + 1));
simplify(A-B)

(1/6)*(y*3^(1/2)+3)*3^(1/2)/(y^2+1)^(1/2)

(1/2)*(y+3^(1/2))/(y^2+1)^(1/2)

0

simplify(arctanh(A)-arctanh(B))

arctanh((1/6)*(y*3^(1/2)+3)*3^(1/2)/(y^2+1)^(1/2))-arctanh((1/2)*(y+3^(1/2))/(y^2+1)^(1/2))

simplify(arctanh(A)-arctanh(B),trig)

arctanh((1/6)*(y*3^(1/2)+3)*3^(1/2)/(y^2+1)^(1/2))-arctanh((1/2)*(y+3^(1/2))/(y^2+1)^(1/2))

simplify(arctanh(A)-arctanh(B)) assuming positive

arctanh((1/6)*(y*3^(1/2)+3)*3^(1/2)/(y^2+1)^(1/2))-arctanh((1/2)*(y+3^(1/2))/(y^2+1)^(1/2))

simplify(arctanh(A)-arctanh(B),trig) assuming positive

arctanh((1/6)*(y*3^(1/2)+3)*3^(1/2)/(y^2+1)^(1/2))-arctanh((1/2)*(y+3^(1/2))/(y^2+1)^(1/2))

plot(arctanh(A),y=-Pi..Pi)

plot(arctanh(B),y=-Pi..Pi)

 

 

Download will_not_simplify.mw

Compare to Mathematica:

First 138 139 140 141 142 143 144 Last Page 140 of 203