rlopez

3020 Reputation

14 Badges

20 years, 236 days

Dr. Robert J. Lopez, Emeritus Professor of Mathematics at the Rose-Hulman Institute of Technology in Terre Haute, Indiana, USA, is an award winning educator in mathematics and is the author of several books including Advanced Engineering Mathematics (Addison-Wesley 2001). For over two decades, Dr. Lopez has also been a visionary figure in the introduction of Maplesoft technology into undergraduate education. Dr. Lopez earned his Ph.D. in mathematics from Purdue University, his MS from the University of Missouri - Rolla, and his BA from Marist College. He has held academic appointments at Rose-Hulman (1985-2003), Memorial University of Newfoundland (1973-1985), and the University of Nebraska - Lincoln (1970-1973). His publication and research history includes manuscripts and papers in a variety of pure and applied mathematics topics. He has received numerous awards for outstanding scholarship and teaching.

MaplePrimes Activity


These are Posts that have been published by rlopez

The greatest benefits from bringing Maple into the classroom are realized when the static pedagogy of a printed textbook is enlivened by the interplay of symbolic, graphic, and numeric calculations made possible by technology.  It is not enough merely to compute or check answers with Maple.  To stop after noting that indeed, Maple can compute the correct answer is not a pedagogical breakthrough.

...

 

In a recent blog post, I pointed out that Maple did not have a built-in functionality for drawing graphs that arise in computing volumes by slices. However, I did provide several examples of ad-hoc visualizations that one could build with the graphing tools in Maple.

 

Recently, a user called attention to a weakness in the Student Calculus 1 command, VolumeOfRevolution. This command (and the tutor built on it) will draw a surface of revolution bounded by the surfaces generated by revolving the graph of one or two functions.

Points and lines, and the relationships between them, are essential ingredients of so many problems in, for example, calculus. In particular, obtaining the equation of the perpendicular bisector of a line segment, dropping a perpendicular from a point to a given line, and calculating the distance from a point to a line are three tasks treated in elementary analytic geometry that recur in the applications....

Back in July of 2005, one of the early Tips & Techniques articles (since updated) in the Maple Reporter was a comparison of two different approaches to fitting a circle to 3D data points. The impetus for the comparison was Carl Cowen's article on the subject. His approach was algebraic - he used the singular value decomposition to obtain a basis for the...

In 1988, Keith Geddes and others involved with the Maple project at the University of Waterloo published a Maple Calculus Workbook of interesting calculus problems and their solutions in Maple. Over the years, I've paged through this book, extracting some of its more unique problems. Recently, I extracted the following problem from this book, and added it to my Clickable Calculus collection, which I use for workshops and web-based presentations.

First 7 8 9 10 11 Page 9 of 11