salim-barzani

1555 Reputation

9 Badges

1 years, 12 days

MaplePrimes Activity


These are questions asked by salim-barzani

i am looking for special solution i want give the maple equation and give what answer i want with condition for example i just want thus solution which is A_0,A_1,B_1 not equal to zero and other parameter like (w,lambda,k) are free just this three not equal to zero.

restart
with(SolveTools);
with(LinearAlgebra);
eq12 := -alpha*k^2*A[0] - alpha*k^2*A[1] - alpha*k^2*B[1] + A[0]^3*beta[4] + (3*A[0]^2)*A[1]*beta[4] + (3*A[0]^2)*B[1]*beta[4] + (3*A[0])*A[1]^2*beta[4] + (6*A[0])*A[1]*B[1]*beta[4] + (3*A[0])*B[1]^2*beta[4] + A[1]^3*beta[4] + (3*A[1]^2)*B[1]*beta[4] + (3*A[1])*B[1]^2*beta[4] + B[1]^3*beta[4] + A[0]^2*beta[3] + (2*A[0])*A[1]*beta[3] + (2*A[0])*B[1]*beta[3] + A[1]^2*beta[3] + (2*A[1])*B[1]*beta[3] + B[1]^2*beta[3] - w*A[0] - w*A[1] - w*B[1] = 0

eq10 := (2*alpha)*k^2*A[1] - (2*alpha)*k^2*B[1] - (8*alpha)*lambda^2*A[1] + (8*alpha)*lambda^2*B[1] - (8*gamma)*lambda^2*A[1] + (8*gamma)*lambda^2*B[1] - (6*A[0]^2)*A[1]*beta[4] + (6*A[0]^2)*B[1]*beta[4] - (12*A[0])*A[1]^2*beta[4] + (12*A[0])*B[1]^2*beta[4] - (6*A[1]^3)*beta[4] - (6*A[1]^2)*B[1]*beta[4] + (6*A[1])*B[1]^2*beta[4] + (6*B[1]^3)*beta[4] - (4*A[0])*A[1]*beta[3] + (4*A[0])*B[1]*beta[3] - (4*A[1]^2)*beta[3] + (4*B[1]^2)*beta[3] + (2*w)*A[1] - (2*w)*B[1] = 0

eq8 := -(3*A[1]^2)*B[1]*beta[4] - (3*A[1])*B[1]^2*beta[4] - (2*A[0])*A[1]*beta[3] - (2*A[0])*B[1]*beta[3] + w*A[1] + w*B[1] - (3*A[0]^2)*B[1]*beta[4] + alpha*k^2*A[1] + alpha*k^2*B[1] - (3*A[0]^2)*A[1]*beta[4] + (3*alpha)*k^2*A[0] + (32*alpha)*lambda^2*A[1] + (32*alpha)*lambda^2*B[1] + (32*gamma)*lambda^2*A[1] + (32*gamma)*lambda^2*B[1] - (3*A[0]^3)*beta[4] + (15*A[0])*A[1]^2*beta[4] - (18*A[0])*A[1]*B[1]*beta[4] + (15*A[0])*B[1]^2*beta[4] + (15*A[1]^3)*beta[4] + (15*B[1]^3)*beta[4] - (3*A[0]^2)*beta[3] + (5*A[1]^2)*beta[3] - (6*A[1])*B[1]*beta[3] + (5*B[1]^2)*beta[3] + (3*w)*A[0] = 0

eq6 := -(4*alpha)*k^2*A[1] + (4*alpha)*k^2*B[1] - (48*alpha)*lambda^2*A[1] + (48*alpha)*lambda^2*B[1] - (48*gamma)*lambda^2*A[1] + (48*gamma)*lambda^2*B[1] + (12*A[0]^2)*A[1]*beta[4] - (12*A[0]^2)*B[1]*beta[4] - (20*A[1]^3)*beta[4] + (12*A[1]^2)*B[1]*beta[4] - (12*A[1])*B[1]^2*beta[4] + (20*B[1]^3)*beta[4] + (8*A[0])*A[1]*beta[3] - (8*A[0])*B[1]*beta[3] - (4*w)*A[1] + (4*w)*B[1] = 0

eq4 := -(3*A[1]^2)*B[1]*beta[4] - (3*A[1])*B[1]^2*beta[4] - (2*A[0])*A[1]*beta[3] - (2*A[0])*B[1]*beta[3] + w*A[1] + w*B[1] - (3*A[0]^2)*B[1]*beta[4] + alpha*k^2*A[1] + alpha*k^2*B[1] - (3*A[0]^2)*A[1]*beta[4] - (3*alpha)*k^2*A[0] + (32*alpha)*lambda^2*A[1] + (32*alpha)*lambda^2*B[1] + (32*gamma)*lambda^2*A[1] + (32*gamma)*lambda^2*B[1] + (3*A[0]^3)*beta[4] - (15*A[0])*A[1]^2*beta[4] + (18*A[0])*A[1]*B[1]*beta[4] - (15*A[0])*B[1]^2*beta[4] + (15*A[1]^3)*beta[4] + (15*B[1]^3)*beta[4] + (3*A[0]^2)*beta[3] - (5*A[1]^2)*beta[3] + (6*A[1])*B[1]*beta[3] - (5*B[1]^2)*beta[3] - (3*w)*A[0] = 0

eq2 := (2*alpha)*k^2*A[1] - (2*alpha)*k^2*B[1] - (8*alpha)*lambda^2*A[1] + (8*alpha)*lambda^2*B[1] - (8*gamma)*lambda^2*A[1] + (8*gamma)*lambda^2*B[1] - (6*A[0]^2)*A[1]*beta[4] + (6*A[0]^2)*B[1]*beta[4] + (12*A[0])*A[1]^2*beta[4] - (12*A[0])*B[1]^2*beta[4] - (6*A[1]^3)*beta[4] - (6*A[1]^2)*B[1]*beta[4] + (6*A[1])*B[1]^2*beta[4] + (6*B[1]^3)*beta[4] - (4*A[0])*A[1]*beta[3] + (4*A[0])*B[1]*beta[3] + (4*A[1]^2)*beta[3] - (4*B[1]^2)*beta[3] + (2*w)*A[1] - (2*w)*B[1] = 0

eq0 := alpha*k^2*A[0] - alpha*k^2*A[1] - alpha*k^2*B[1] - A[0]^3*beta[4] + (3*A[0]^2)*A[1]*beta[4] + (3*A[0]^2)*B[1]*beta[4] - (3*A[0])*A[1]^2*beta[4] - (6*A[0])*A[1]*B[1]*beta[4] - (3*A[0])*B[1]^2*beta[4] + A[1]^3*beta[4] + (3*A[1]^2)*B[1]*beta[4] + (3*A[1])*B[1]^2*beta[4] + B[1]^3*beta[4] - A[0]^2*beta[3] + (2*A[0])*A[1]*beta[3] + (2*A[0])*B[1]*beta[3] - A[1]^2*beta[3] - (2*A[1])*B[1]*beta[3] - B[1]^2*beta[3] + w*A[0] - w*A[1] - w*B[1] = 0

COEFFS := solve({eq0, eq10, eq12, eq2, eq4, eq6, eq8}, {k, lambda, w, A[0], A[1], B[1]})

 

restart;
with(DEtools);
ode := diff(y(x), x) = epsilon - y(x)^2;
                       d                       2
               ode := --- y(x) = epsilon - y(x) 
                       dx                       

sol := dsolve(ode);
                  /           (1/2)            (1/2)\        (1/2)
sol := y(x) = tanh\_C1 epsilon      + x epsilon     / epsilon     

P := particularsol(ode);
                          (1/2)                 (1/2)  
       P := y(x) = epsilon     , y(x) = -epsilon     , 

                /    y(x)    \            (1/2)          
         arctanh|------------| - x epsilon      + _C1 = 0
                |       (1/2)|                           
                \epsilon     /                           


i am looking for finding all solution of this equation like this picture below

there is any way for define conformable fractional derivative in partial differential equation

restart;
with(PDEtools);
pde := a*diff(psi(x, t), x $ 2) + (b*abs(psi(x, t))^(-2*n) + c*abs(psi(x, t))^(-n) + d*abs(psi(x, t))^n + f*abs(psi(x, t))^(2*n))*psi(x, t) = 0;
pde + i*diff(u(x, t), [t $ beta]) = 0;

how define a  fractional derivative in sense of conformable derivative

i did a solution of this ODE equation but the solution of paper is different from mine also in other some equation i have same problem i can't get exactly and pretty solution

how  define a function for computing multi-variable adomian polynomial  what is wrong with this? what i did mistake

First 30 31 32 Page 32 of 32