salim-barzani

1555 Reputation

9 Badges

1 years, 12 days

MaplePrimes Activity


These are questions asked by salim-barzani

Hi
i did calculation part by part of adomian laplace method but if we can make a loop for it is gonna be so great and take back a lot of time

restart

with(inttrans)

pde := diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = t^2*x+x

diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = t^2*x+x

(1)

eq := laplace(pde, t, s)

s*laplace(u(x, t), t, s)-u(x, 0)+laplace(u(x, t)*(diff(u(x, t), x)), t, s) = x*(s^2+2)/s^3

(2)

eq2 := subs({u(x, 0) = 0}, eq)

s*laplace(u(x, t), t, s)+laplace(u(x, t)*(diff(u(x, t), x)), t, s) = x*(s^2+2)/s^3

(3)

NULL

lap := s^alpha*laplace(u(x, t), t, s) = x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s)

s^alpha*laplace(u(x, t), t, s) = x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s)

(4)

lap1 := lap/s^alpha

laplace(u(x, t), t, s) = (x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s))/s^alpha

(5)

NULL

lap2 := invlaplace(lap1, s, t)

u(x, t) = -invlaplace(s^(-alpha)*laplace(u(x, t)*(diff(u(x, t), x)), t, s), s, t)+x*(invlaplace(s^(-1-alpha), s, t)+2*invlaplace(s^(-3-alpha), s, t))

(6)

NULL

lap3 := u(x, t) = t^alpha*x/GAMMA(alpha+1)+2*x*t^(alpha+2)/GAMMA(alpha+3)-invlaplace(laplace(u(x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

u(x, t) = t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha)-invlaplace(laplace(u(x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

(7)

NULL

NULL

NULL

NULL

``

(8)

u[1](x, t) = -invlaplace(laplace(u[0](x, t)*(diff(u[0](x, t), x)), t, s)/s^alpha, s, t)

u[1](x, t) = -invlaplace(laplace(u[0](x, t)*(diff(u[0](x, t), x)), t, s)/s^alpha, s, t)

(9)

"u[0](x,t):=(t^alpha x)/(GAMMA(1+alpha))+(2 x t^(alpha+2))/(GAMMA(3+alpha))"

proc (x, t) options operator, arrow, function_assign; t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha) end proc

(10)

n := N

N

(11)

k := K

K

(12)

f := proc (u) options operator, arrow; u*(diff(u, x)) end proc

proc (u) options operator, arrow; u*(diff(u, x)) end proc

(13)

for j from 0 to 3 do A[j] := subs(lambda = 0, (diff(f(seq(sum(lambda^i*u[i](x, t), i = 0 .. 20), m = 1 .. 2)), [`$`(lambda, j)]))/factorial(j)) end do

(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))

 

u[1](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[1](x, t), x))

 

u[2](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+u[1](x, t)*(diff(u[1](x, t), x))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[2](x, t), x))

 

u[3](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+u[2](x, t)*(diff(u[1](x, t), x))+u[1](x, t)*(diff(u[2](x, t), x))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[3](x, t), x))

(14)

S1 := u[1](x, t) = -invlaplace((t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))/s^alpha, s, t)

u[1](x, t) = -x*(t^alpha)^2*invlaplace(s^(-alpha), s, t)*(1/GAMMA(1+alpha)^2+4*t^2/(GAMMA(3+alpha)*GAMMA(1+alpha))+4*t^4/GAMMA(3+alpha)^2)

(15)

NULL

NULL

u[1](x, t) = x*GAMMA(2*alpha+1)*t^(3*alpha)/(GAMMA(1+alpha)^2*GAMMA(3*alpha+1))-4*x*GAMMA(2*alpha+3)*t^(3*alpha+2)/(GAMMA(1+alpha)*GAMMA(3+alpha)*GAMMA(3*alpha+3))-4*`xΓ`(2*alpha+5)/(GAMMA(3+alpha)^2*GAMMA(3*alpha+3))

u[1](x, t) = x*GAMMA(2*alpha+1)*t^(3*alpha)/(GAMMA(1+alpha)^2*GAMMA(3*alpha+1))-4*x*GAMMA(2*alpha+3)*t^(3*alpha+2)/(GAMMA(1+alpha)*GAMMA(3+alpha)*GAMMA(3*alpha+3))-4*`xΓ`(2*alpha+5)/(GAMMA(3+alpha)^2*GAMMA(3*alpha+3))

(16)

NULL

u[2](x, t) = -invlaplace(laplace(u[1](x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

NULL

NULL


for get definition use this pdf for fractional derivation

[Copyrighted material removed by moderator - see https://doi.org/10.4236/am.2018.94032]

Download solving_example_1.mw

Hi

i use other code for equation too when i use allvalues(Root(...)) it is more near but question is this why not satisfy the ode equation this is my equation this parameter are find for this ODe why not satisfy otherwise my equestions must be wrong!

restart

with(PDEtools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(DEtools)

``

with(LinearAlgebra)

with(sumtools)

eq0 := 2*beta*g[1]^3*r[0]^3+2*p^2*sigma*g[1]*r[0]^3 = 0

eq1 := 6*beta*g[1]^3*r[0]^2*r[1]+3*p^2*sigma*g[1]*r[0]^2*r[1]+6*beta*f[0]*g[1]^2*r[0]^2 = 0

eq2 := 6*beta*g[1]^3*r[0]^2*r[2]+6*beta*g[1]^3*r[0]*r[1]^2+2*p^2*sigma*g[1]*r[0]^2*r[2]+p^2*sigma*g[1]*r[0]*r[1]^2+12*beta*f[0]*g[1]^2*r[0]*r[1]+6*beta*f[1]*g[1]^2*r[0]^2+6*beta*f[0]^2*g[1]*r[0]-k^2*sigma*g[1]*r[0]-2*w*g[1]*r[0] = 0

eq3 := 12*beta*g[1]^3*r[0]*r[1]*r[2]+2*beta*g[1]^3*r[1]^3+2*p^2*sigma*g[1]*r[0]*r[1]*r[2]+12*beta*f[0]*g[1]^2*r[0]*r[2]+6*beta*f[0]*g[1]^2*r[1]^2+12*beta*f[1]*g[1]^2*r[0]*r[1]+p^2*sigma*f[1]*r[0]*r[1]+6*beta*f[0]^2*g[1]*r[1]+12*beta*f[0]*f[1]*g[1]*r[0]-k^2*sigma*g[1]*r[1]+2*beta*f[0]^3-k^2*sigma*f[0]-2*w*g[1]*r[1]-2*w*f[0] = 0

eq4 := 6*beta*g[1]^3*r[0]*r[2]^2+6*beta*g[1]^3*r[1]^2*r[2]+2*p^2*sigma*g[1]*r[0]*r[2]^2+p^2*sigma*g[1]*r[1]^2*r[2]+12*beta*f[0]*g[1]^2*r[1]*r[2]+12*beta*f[1]*g[1]^2*r[0]*r[2]+6*beta*f[1]*g[1]^2*r[1]^2+2*p^2*sigma*f[1]*r[0]*r[2]+p^2*sigma*f[1]*r[1]^2+6*beta*f[0]^2*g[1]*r[2]+12*beta*f[0]*f[1]*g[1]*r[1]+6*beta*f[1]^2*g[1]*r[0]-k^2*sigma*g[1]*r[2]+6*beta*f[0]^2*f[1]-k^2*sigma*f[1]-2*w*g[1]*r[2]-2*w*f[1] = 0

eq5 := 6*beta*g[1]^3*r[1]*r[2]^2+3*p^2*sigma*g[1]*r[1]*r[2]^2+6*beta*f[0]*g[1]^2*r[2]^2+12*beta*f[1]*g[1]^2*r[1]*r[2]+3*p^2*sigma*f[1]*r[1]*r[2]+12*beta*f[0]*f[1]*g[1]*r[2]+6*beta*f[1]^2*g[1]*r[1]+6*beta*f[0]*f[1]^2 = 0

eq6 := 2*beta*g[1]^3*r[2]^3+2*p^2*sigma*g[1]*r[2]^3+6*beta*f[1]*g[1]^2*r[2]^2+2*p^2*sigma*f[1]*r[2]^2+6*beta*f[1]^2*g[1]*r[2]+2*beta*f[1]^3 = 0

NULL

NULL

COEFFS := solve({eq0, eq1, eq2, eq3, eq4, eq5, eq6}, {p, f[0], f[1], g[1]}, explicit)

NULL

ode := 2*beta*U(xi)^3+(-k^2*sigma-2*w)*U(xi)+(diff(diff(U(xi), xi), xi))*p^2*sigma = 0

2*beta*U(xi)^3+(-k^2*sigma-2*w)*U(xi)+(diff(diff(U(xi), xi), xi))*p^2*sigma = 0

(2)

P := f[0]+sum(f[i]*R(xi)^i, i = 1 .. 1)+sum(g[i]*((diff(R(xi), xi))/R(xi))^i, i = 1 .. 1)

f[0]+f[1]*R(xi)+g[1]*(diff(R(xi), xi))/R(xi)

(3)

case1 := {p = -sqrt(2)*sqrt(sigma*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))/(sigma*(4*r[0]*r[2]-r[1]^2)), f[0] = -(k^2*sigma+2*w)*r[1]/sqrt(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w)), f[1] = -(2*(k^2*sigma+2*w))*r[2]/sqrt(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w)), g[1] = -sqrt(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))/(beta*(4*r[0]*r[2]-r[1]^2))}

{p = -2^(1/2)*(sigma*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)/(sigma*(4*r[0]*r[2]-r[1]^2)), f[0] = -(k^2*sigma+2*w)*r[1]/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2), f[1] = -2*(k^2*sigma+2*w)*r[2]/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2), g[1] = -(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)/(beta*(4*r[0]*r[2]-r[1]^2))}

(4)

NULL

``

(5)

K := diff(R(xi), xi) = r[0]+r[1]*R(xi)+r[2]*R(xi)^2

diff(R(xi), xi) = r[0]+r[1]*R(xi)+r[2]*R(xi)^2

(6)

S1 := subs(K, P)

f[0]+f[1]*R(xi)+g[1]*(r[0]+r[1]*R(xi)+r[2]*R(xi)^2)/R(xi)

(7)

NULL

C1 := subs(case1, S1)

-(k^2*sigma+2*w)*r[1]/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)-2*(k^2*sigma+2*w)*r[2]*R(xi)/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)-(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)*(r[0]+r[1]*R(xi)+r[2]*R(xi)^2)/(beta*(4*r[0]*r[2]-r[1]^2)*R(xi))

(8)

f := U(xi) = C1

U(xi) = -(k^2*sigma+2*w)*r[1]/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)-2*(k^2*sigma+2*w)*r[2]*R(xi)/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)-(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)*(r[0]+r[1]*R(xi)+r[2]*R(xi)^2)/(beta*(4*r[0]*r[2]-r[1]^2)*R(xi))

(9)

NULL

SO := subs(case1, ode)

2*beta*U(xi)^3+(-k^2*sigma-2*w)*U(xi)+2*(diff(diff(U(xi), xi), xi))*(k^2*sigma+2*w)/(4*r[0]*r[2]-r[1]^2) = 0

(10)

NULL

odetest(f, SO)


same_equation_different_parameter.mw

restart

with(PDEtools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(DEtools)

NULL

with(DifferentialAlgebra)

"with(Student[ODEs][Solve]): "

with(IntegrationTools)

with(inttrans)

with(PDEtools)

with(Physics)

with(PolynomialTools)

with(RootFinding)

with(SolveTools)

with(LinearAlgebra)

with(sumtools)

pde := I*(diff(psi(x, t), t))+alpha*(diff(psi(x, t), `$`(x, 2)))+(beta[3]*abs(psi(x, t))+beta[4]*abs(psi(x, t))^2)*psi(x, t)+gamma*(diff(abs(psi(x, t))^2, `$`(x, 2)))*psi(x, t)/abs(psi(x, t)) = 0

case1 := {k = k, lambda = sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3], w = -(9*alpha*k^2*beta[4]+2*beta[3]^2)/(9*beta[4]), A[0] = -beta[3]/(3*beta[4]), A[1] = beta[3]/(3*beta[4]), B[1] = 0}

" psi(x,t):=U(xi)*exp(I*(-k*x+w*t+theta))"

proc (x, t) options operator, arrow, function_assign; U(xi)*exp(I*(-k*x+w*t+theta)) end proc

(2)

" U(xi):=-(beta[3] (cosh(xi)-sinh(xi)))/(3 beta[4] cosh(xi))"

proc (xi) options operator, arrow, function_assign; -(1/3)*beta[3]*(cosh(xi)-sinh(xi))/(beta[4]*cosh(xi)) end proc

(3)

convert(U(xi), trig)

-(1/3)*beta[3]*(cosh(xi)-sinh(xi))/(beta[4]*cosh(xi))

(4)

xi := sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*kt+x)

(-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)

(5)

S := psi(x, t)

-(1/3)*beta[3]*(cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x))-sinh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))*exp(I*(-k*x+t*w+theta))/(beta[4]*cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))

(6)

solution := subs(case1, S)

-(1/3)*beta[3]*(cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x))-sinh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))*exp(I*(-k*x-(1/9)*(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/beta[4]+theta))/(beta[4]*cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))

(7)

pdetest(psi(x, t) = -beta[3]*(cosh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x))-sinh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x)))*exp(I*(-k*x-(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/(9*beta[4])+theta))/(3*beta[4]*cosh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x)))*exp(I*(-k*x-(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/(9*beta[4])+theta)), pde)

Error, (in pdetest) unable to determine the indeterminate function

 

NULL

 

 

 

 

Download pde-solve.mw

restart;
with(PolynomialTools);
with(RootFinding);
with(SolveTools);
with(LinearAlgebra);
NULL;
NULL;
E1 := (-alpha*k^2*A[1] - alpha*k^2*B[1] + 3*A[0]^2*A[1]*beta[4] + 3*A[0]^2*B[1]*beta[4] + A[1]^3*beta[4] + 3*A[1]^2*B[1]*beta[4] + 3*A[1]*B[1]^2*beta[4] + B[1]^3*beta[4] + 2*A[0]*A[1]*beta[3] + 2*A[0]*B[1]*beta[3] - w*A[1] - w*B[1])*cosh(xi)^6 + (-alpha*k^2*A[0] + A[0]^3*beta[4] + 3*A[0]*A[1]^2*beta[4] + 6*A[0]*A[1]*B[1]*beta[4] + 3*A[0]*B[1]^2*beta[4] + A[0]^2*beta[3] + A[1]^2*beta[3] + 2*A[1]*B[1]*beta[3] + B[1]^2*beta[3] - w*A[0])*sinh(xi)*cosh(xi)^5 + (2*alpha*k^2*A[1] + alpha*k^2*B[1] - 2*alpha*lambda^2*A[1] + 2*alpha*lambda^2*B[1] - 2*gamma*lambda^2*A[1] + 2*gamma*lambda^2*B[1] - 6*A[0]^2*A[1]*beta[4] - 3*A[0]^2*B[1]*beta[4] - 3*A[1]^3*beta[4] - 6*A[1]^2*B[1]*beta[4] - 3*A[1]*B[1]^2*beta[4] - 4*A[0]*A[1]*beta[3] - 2*A[0]*B[1]*beta[3] + 2*w*A[1] + w*B[1])*cosh(xi)^4 + (alpha*k^2*A[0] - A[0]^3*beta[4] - 6*A[0]*A[1]^2*beta[4] - 6*A[0]*A[1]*B[1]*beta[4] - A[0]^2*beta[3] - 2*A[1]^2*beta[3] - 2*A[1]*B[1]*beta[3] + w*A[0])*sinh(xi)*cosh(xi)^3 + (-alpha*k^2*A[1] + 4*alpha*lambda^2*A[1] + 4*gamma*lambda^2*A[1] + 3*A[0]^2*A[1]*beta[4] + 3*A[1]^3*beta[4] + 3*A[1]^2*B[1]*beta[4] + 2*A[0]*A[1]*beta[3] - w*A[1])*cosh(xi)^2 + (3*A[0]*A[1]^2*beta[4] + A[1]^2*beta[3])*sinh(xi)*cosh(xi) - 2*alpha*lambda^2*A[1] - 2*gamma*lambda^2*A[1] - A[1]^3*beta[4] = 0;
N := 6;
for i from 0 to N do
    equ[1][i] := coeff(E1, {cosh(xi)^i, sinh(xi)^i}, i) = 0;
end do;
             //        2               2     
equ[1][0] := \\-alpha k  A[1] - alpha k  B[1]

           2                      2                    3        
   + 3 A[0]  A[1] beta[4] + 3 A[0]  B[1] beta[4] + A[1]  beta[4]

           2                           2               3        
   + 3 A[1]  B[1] beta[4] + 3 A[1] B[1]  beta[4] + B[1]  beta[4]

                                                                \ 
   + 2 A[0] A[1] beta[3] + 2 A[0] B[1] beta[3] - w A[1] - w B[1]/ 

          6   /        2            3        
  cosh(xi)  + \-alpha k  A[0] + A[0]  beta[4]

                2                                   
   + 3 A[0] A[1]  beta[4] + 6 A[0] A[1] B[1] beta[4]

                2               2               2        
   + 3 A[0] B[1]  beta[4] + A[0]  beta[3] + A[1]  beta[3]

                               2                 \          
   + 2 A[1] B[1] beta[3] + B[1]  beta[3] - w A[0]/ sinh(xi) 

          5   /         2               2     
  cosh(xi)  + \2 alpha k  A[1] + alpha k  B[1]

                   2                      2     
   - 2 alpha lambda  A[1] + 2 alpha lambda  B[1]

                   2                      2     
   - 2 gamma lambda  A[1] + 2 gamma lambda  B[1]

           2                      2             
   - 6 A[0]  A[1] beta[4] - 3 A[0]  B[1] beta[4]

           3                 2             
   - 3 A[1]  beta[4] - 6 A[1]  B[1] beta[4]

                2                              
   - 3 A[1] B[1]  beta[4] - 4 A[0] A[1] beta[3]

                                            \         4   /      
   - 2 A[0] B[1] beta[3] + 2 w A[1] + w B[1]/ cosh(xi)  + \alpha 

   2            3                      2        
  k  A[0] - A[0]  beta[4] - 6 A[0] A[1]  beta[4]

                                    2                 2        
   - 6 A[0] A[1] B[1] beta[4] - A[0]  beta[3] - 2 A[1]  beta[3]

                                 \                  3   /
   - 2 A[1] B[1] beta[3] + w A[0]/ sinh(xi) cosh(xi)  + \
        2                      2                      2     
-alpha k  A[1] + 4 alpha lambda  A[1] + 4 gamma lambda  A[1]

           2                      3        
   + 3 A[0]  A[1] beta[4] + 3 A[1]  beta[4]

           2                                            \ 
   + 3 A[1]  B[1] beta[4] + 2 A[0] A[1] beta[3] - w A[1]/ 

          2
  cosh(xi) 

     /           2               2        \                  
   + \3 A[0] A[1]  beta[4] + A[1]  beta[3]/ sinh(xi) cosh(xi)

                   2                      2            3           
   - 2 alpha lambda  A[1] - 2 gamma lambda  A[1] - A[1]  beta[4] = 

   \    
  0/ = 0


                       equ[1][1] := 0 = 0

                       equ[1][2] := 0 = 0

                       equ[1][3] := 0 = 0

                       equ[1][4] := 0 = 0

                       equ[1][5] := 0 = 0

                       equ[1][6] := 0 = 0

NULL;
NULL;

Download loop_for_coeficent.mw

i am looking for all outcome of this function how i can do it


phi := (`\`p_1,p__2`, q__1, q__2, xi) -> p__1*exp(q__1*xi) - p__2*exp(q__2*xi);
for p[1 ] in [0,1,-1,I,-I] do ;
for p[2 ] in [0,1,-1,I,-I] do ;

 for q[1 ] in [0,1,-1,I,-I] do ;
 for q[2 ] in [0,1,-1,I,-I] do ;
result1 := evalf(phi(`\`p_1,p__2`, q__1, q__2, xi));
print('result1);

my code is not correct and not run in fact but it is my try

First 29 30 31 32 Page 31 of 32