Maple users frequently solve differential equations. If you want to use the results later in Maple, you need to deconstruct the solution, and then assign the functions -- something that isn't done automatically in Maple. We wrote a multi-purpose routine to help you out. For instance, suppose you solve a simple linear system of equations:

restart;
eqs := { x + y = 3, x - y = 1 };
soln := solve( eqs ); # { x = 2, y = 1 }
x, y; # plain x and y

To assign the values from the solution to the corresponding variables:

assign( soln );
x, y; # 2, 1

This won't work for solutions of differential equations:

restart;
sys := { D(x)(t) = y(t), D(y)(t) = -x(t), x(0) = 1, y(0) = 0 };
soln := dsolve( sys ); # { x(t) = cos(t), y(t) = -sin(t) }
assign( soln );
x(s), y(s); # plain x(s) and y(s)

To make this work, we wrote this multi-purpose routine:

restart;
# Type for a variable expression, e.g. x=5.
TypeTools:-AddType( 'varexpr', u -> type( u, 'And'('name','Non'('constant'))='algebraic' ) ):
# Type for a function expression, e.g. f(x)=x^2.
TypeTools:-AddType( 'funcexpr', u -> type( u, 'function'('And'('name','Non'('constant')))='algebraic' ) ):
# Procedure to assign variable and function expressions.
my_assign := proc( u :: {
varexpr, 'list'(varexpr), 'rtable'(varexpr), 'set'(varexpr),
funcexpr, 'list'(funcexpr), 'rtable'(funcexpr), 'set'(funcexpr)
}, $ )
local F, L, R, V:
# Map the procedure if input is a data container, or apply regular assign(), where applicable.
if not u :: {'varexpr','funcexpr'} then
map( procname, u ):
return NULL:
elif u :: 'varexpr' then
assign( u ):
return NULL:
end if:
L, R := lhs(u), rhs(u):
F := op(0,L):
V := [ indets( L, 'And'( 'name', 'Non'('constant') ) )[] ]:
map( assign, F, unapply( R, V ) ):
return NULL:
end proc:
# Example 1.
eqs := { x + y = 3, x - y = 1 };
my_assign( solve( eqs ) );
'x' = x, 'y' = y; # x=1, y=2
# Example 2.
unassign( 'x', 'y' ):
E := [ f(x,y) = x + y, g(x,y) = x - y ];
my_assign( E );
'f(u,v)' = f(u,v), 'g(u,v)' = g(u,v); # f(u,v)=u+v, g(u,v)=u-v
# Example 3.
sys := { D(x)(t) = y(t), D(y)(t) = -x(t), x(0) = 1, y(0) = 0 };
soln := dsolve( sys );
my_assign( soln ):
'x(s)' = x(s); # x(s)=cos(s)
'y(s)' = y(s); # y(s)=-sin(s)