Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Greetings

I trust that everyone is well here. I have an inquiry regarding the partitioning of a matrix BA, defined on both regular and irregular domains, into three matrices: Ad, Ab, and Ae, such that NewBA = Ad + Ab + Ae. Here, Ad comprises the entries of BA that reside within the domain, Ab includes the elements of BA located on the boundary, and Ae is derived as BA - Ad - Ab for any values of Mx and My. The specifics of matrix BA are contained in the attached document where NewBA constructed manually for different values of Mx and My for better understanding.
Splitting_a_matrix.mw
The attached file contains the matrix BA constructed in a square format. How may the BA matrix be adapted to create an irregular shape, such as a quarter circle?

The red dots indicate the mesh within the domain Ad, while the meshing along the blue line should occur in Ab.

I await your kind reply. Kindly ensure your well-being

I’m getting an error while solving the equations derived from the KKT conditions.
What syntax modifications should I make?
The decision variables are p1 and pr, with two constraints.

sheet: Q1_solve_equation.mw
 

I can't seem to find the "Stop Execution" symbol with the new Maple 2025.1 GUI.  Does anyone know where it went?

I installed a free trial of Maple 2025, but I can't seem to get the (simple) sample test.java script to run using OpenMaple. It compiles fine, but when I try to run it I get a Segmentation Fault error. I've ensured that the environmental variables, as described in the installation documentation, are given properly. The documentation/example in the installation refers to an old version of Maple, so I wondered if perhaps the free trial version does not have all of the updated components? I was hoping to test my project compatibility with OpenMaple before purchasing Maple.

My OS is Ubuntu 24.04, and I'm using Java 21. It would be nice to get everything running in IntelliJ eventually, but for now even trying to run in the terminal is problematic.

This post is written by a mathematics teacher who usually views Maple’s new initiatives from an educational perspective, and I’m well aware that others may see things differently. A single user might be delighted by a new feature that fits their personal workflow. An advanced user might not care if something requires a workaround.

There are also many preferences when it comes to how the interface should look. I often consider whether something will work well for our high school as a whole. We have students who are not very mathematically or scientifically inclined, and others who are. That’s why user-friendliness is essential. Some packages have been developed to make things easier for students. We try to avoid too many workarounds, since these often create problems for them.

Now, on to Maple 2025’s new interface:

When Microsoft introduced tabs and ribbons instead of menus and toolbars in Word many years ago, I personally thought it was a good idea. I can imagine it working well in Maple too — especially if the different elements are placed logically on the tabs, and frequently used functions are easy to access.

However, I just returned from summer vacation, ready for a new school year, only to discover something surprising: the Windows version comes with the new ribbon interface, while the Mac version still has the old one! For any teacher, this is a nightmare scenario: teaching a class where the Windows and Mac interfaces look completely different. Has Maplesoft ended up caught between two chairs here?

I’ve heard that a Mac version with tabs and ribbons is under development. But since it’s not ready yet, we can’t use it. On Windows, I also noticed a strange extra application called “Maple 2025 Screen Readers”. If you open it directly, you get an odd mix of modern 2D notation and old 1D Maple notation, which is simply unacceptable. If you instead click “Screen Reader Mode” in the top-right corner, it looks more normal. But does that mean it’s fully functional? If so, we might be able to combine this with the Mac version that still uses the old interface — and then switch next year to both Windows and Mac with tabs and ribbons. Still, I must say that Maplesoft is providing far too little information on this! Around 75% of our students use Macs, while only 25% use Windows.

Another issue: When saving a Maple file on a Windows computer, you’re forced into Maple’s own “Save As” window. I’ve previously suggested that it should instead open directly in Windows’ native File Explorer, which is far more powerful. In File Explorer, you can quickly use Quick Access shortcuts to save the file in the right folder. In Maple’s “Save As” window, however, it often takes 6–7 extra clicks to reach the desired location. For students who aren’t very tech-savvy, navigating through a deep folder tree can be a real challenge. Why doesn’t Maplesoft just use Windows’ own File Explorer, which students are already familiar with? Most other programs do. Perhaps someone can explain why Maplesoft insists on keeping their own limited “Save As” dialog.

Finally: I do believe that tabs and ribbons can be a good solution, but there’s still work to be done in placing items on appropriate tabs. For example, although I personally use the F5 keyboard shortcut to switch between Text, Non-executable Math, and Math mode, I know many students prefer to click on these options in Maple 2024. In the new interface, it now takes two or three clicks to do so. Since this is a function used very frequently, that’s a drawback. Couldn’t users be allowed to customize the Quick Access toolbar — via the Options menu — so these items can be placed there if needed?

 

 

In thus manuscript i got some reviewer comment which is asked to simplify this expresion and there is a lot of them maybe if i do by hand i  made a mistake becuase a lot of variable so how i can fix this issue and make thus square root are very simple as they demand

restart

B[2] := 0

0

(1)

K := sqrt(-(1/2)*sqrt(2)*sqrt(lambda*a[5]/a[4])+sqrt(-a[5]/(2*a[4]))*(B[1]*sqrt(-lambda)*sinh(xi*sqrt(-lambda))+B[2]*sqrt(-lambda)*cosh(xi*sqrt(-lambda)))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda)+sqrt(-(lambda^2*B[1]^2*a[5]-lambda^2*B[2]^2*a[5]-mu^2*a[5])/(2*lambda*a[4]))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda))*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(2)

simplify(K)

(1/2)*exp(I*((k*v+w)*tau^alpha+alpha*(k*xi+gamma))/alpha)*2^(3/4)*((lambda*(a[5]*(-lambda^2*B[1]^2+mu^2)/(lambda*a[4]))^(1/2)+(-B[1]*cosh(xi*(-lambda)^(1/2))*lambda-mu)*(lambda*a[5]/a[4])^(1/2)+sinh(xi*(-lambda)^(1/2))*lambda*(-a[5]/a[4])^(1/2)*(-lambda)^(1/2)*B[1])/(B[1]*cosh(xi*(-lambda)^(1/2))*lambda+mu))^(1/2)

(3)

subsindets(K, `&*`(rational, anything^(1/2)), proc (u) options operator, arrow; (u^2)^(1/2) end proc)

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(4)

latex(%)

\frac{\sqrt{-2 \sqrt{2}\, \sqrt{\frac{\lambda  a_{5}}{a_{4}}}+\frac{2 \sqrt{-\frac{2 a_{5}}{a_{4}}}\, B_{1} \sqrt{-\lambda}\, \sinh \left(\xi  \sqrt{-\lambda}\right)}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}+\frac{2 \sqrt{-\frac{2 \left(\lambda^{2} B_{1}^{2} a_{5}-\mu^{2} a_{5}\right)}{\lambda  a_{4}}}}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}}\, {\mathrm e}^{\mathrm{I} \left(k \left(\xi +\frac{v \,\tau^{\alpha}}{\alpha}\right)+\frac{w \,\tau^{\alpha}}{\alpha}+\gamma \right)}}{2}

 

KK := sqrt(-(1/2)*sqrt(2)*sqrt(lambda*a[5]/a[4])+sqrt(-a[5]/(2*a[4]))*(B[1]*sqrt(-lambda)*sinh(xi*sqrt(-lambda))+B[2]*sqrt(-lambda)*cosh(xi*sqrt(-lambda)))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda)+sqrt(-(lambda^2*B[1]^2*a[5]-lambda^2*B[2]^2*a[5]-mu^2*a[5])/(2*lambda*a[4]))/(B[1]*cosh(xi*sqrt(-lambda))+B[2]*sinh(xi*sqrt(-lambda))+mu/lambda))*exp(I*(k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma))

(1/2)*(-2*2^(1/2)*(lambda*a[5]/a[4])^(1/2)+2*(-2*a[5]/a[4])^(1/2)*B[1]*(-lambda)^(1/2)*sinh(xi*(-lambda)^(1/2))/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda)+2*(-2*(lambda^2*B[1]^2*a[5]-mu^2*a[5])/(lambda*a[4]))^(1/2)/(B[1]*cosh(xi*(-lambda)^(1/2))+mu/lambda))^(1/2)*exp((k*(xi+v*tau^alpha/alpha)+w*tau^alpha/alpha+gamma)*I)

(5)

latex(KK)

\frac{\sqrt{-2 \sqrt{2}\, \sqrt{\frac{\lambda  a_{5}}{a_{4}}}+\frac{2 \sqrt{-\frac{2 a_{5}}{a_{4}}}\, B_{1} \sqrt{-\lambda}\, \sinh \left(\xi  \sqrt{-\lambda}\right)}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}+\frac{2 \sqrt{-\frac{2 \left(\lambda^{2} B_{1}^{2} a_{5}-\mu^{2} a_{5}\right)}{\lambda  a_{4}}}}{B_{1} \cosh \left(\xi  \sqrt{-\lambda}\right)+\frac{\mu}{\lambda}}}\, {\mathrm e}^{\mathrm{I} \left(k \left(\xi +\frac{v \,\tau^{\alpha}}{\alpha}\right)+\frac{w \,\tau^{\alpha}}{\alpha}+\gamma \right)}}{2}

 

NULL

Download simplify.mw

I am trying to factor out I = sqrt(-1) from square roots in my Maple expression by using a substitution f2. However, after applying these substitutions to my final expression, there is no visible change. In addition, the term sqrt(2)/2 + sqrt(2)*I/2 also appear. How can I=sqrt(-1) can be properly factored out from the square roots?

restart

with(Student[Precalculus])

interface(showassumed = 0)

assume(x::real); assume(t::real); assume(lambda1::complex); assume(lambda2::complex); assume(a::real); assume(A__c::real); assume(B1::real); assume(B2::real); assume(delta1::real); assume(delta2::real); assume(`ω__0`::real); assume(g::real); assume(l__0::real)

expr := (0*A__c)*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t)))*(sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(((-sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))+exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))+exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t))*((sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))))*(-delta1+I*delta2)*(delta1+I*delta2))

(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t)))*((-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(((-(delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))+exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)))*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))+exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t))*(((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))))*(I*delta2-delta1)*(delta1+I*delta2))

(1)

`assuming`([simplify(combine(simplify(convert(combine(eval(expr, delta1 = 0)), trigh))))], [delta2 > g*A__c and g*A__c > 0])

(cos((2*A__c^2*g*l__0^2-1)*omega__0*t)-I*sin((2*A__c^2*g*l__0^2-1)*omega__0*t))*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/(delta2*(I*(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))+delta2))

(2)

f1 := simplify(convert(numer(%),exp))/factor(denom(%))

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/((-(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*(-A__c^2*g-delta2^2)^(1/2))+I*delta2)*delta2)

(3)

sqrtterms := indets(%, sqrt)

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2)}

(4)

f2 := subs({sqrtterms[1] = sqrt(I)*sqrt(delta2-sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[2] = sqrt(I)*sqrt(delta2+sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[3] = sqrt(I)*sqrt(A__c^2*g+delta2^2)})

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2)}

(5)

f3 := subs(f2, f1)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))+I*delta2)*delta2)

(6)

f4 := subs({sqrt(A__c^2*g+delta2^2) = Z}, f3)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(7)

f4f := A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+f4

A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)+I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(8)

f4fnl := subs({I = -I, x = -x}, f4f)

A__c*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)-I*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(I*cosh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0+x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)-I*delta2)*delta2)

(9)

Mdensity := simplify(f4f*f4fnl)

(1/4)*(2*(1-I*A__c*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)-2*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2+(1+I)*2^(1/2)*Z*sinh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)+(2*I)*A__c*delta2^2)*(2*(I*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*A__c-1)*delta2*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)+(1-I)*2^(1/2)*Z*sinh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-(2*I)*A__c*delta2^2+2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2))/(delta2^2*((delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-delta2)*((delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)-delta2))

(10)

NULL

Download simplify.mw

Using Eigenvalues and Eigenvectors commands with symmetric matrices (so real eigenvalues) I get something like

Can I avoid "+0.I"?
Thanks

...flies around in the spatial Cartesian coordinate system and impacts the coordinate planes xy, xz, and yz with exactly one impact. This creates circular impressions on the coordinate planes in this order, with the radii r1, r2, and r3, which are assumed to be known. From these, the sphere's radius r and the coordinates of its center can be determined?

Is there a short-cut for jumping to a specific output label in a Maple worksheet?

I have a Maple worksheet with over 200 labels:  (1), (2), ....., (236) etc?

"Find" does not seem to work.

Thanks

Frank Garvan

In the 3D figure, the z-axis currently extends only to zero; please extend it to include positive values. Also help needed in setting the optimal point which is not clearly visible now—how to adjust the view and labeling to highlight only its z-value. How can we Improve the overall clarity and positioning of the figure to enhance visual readability.

Q_figure.mw

Download Q_figure.mw

How to solve two boundary problems in one graph not getting graphs shown in pdf
symetry_paper_work.mw
symmetry_graphs_pdf.pdf

How to get table values 

i  can determine the pdes by one variable which is work so good but in some of the pdes i have two function i can separate by hand but how i can do by maple?

Download linear.mw

i did a lot of trail to avoid for find my parameter in the last step of that i get this `[Length of output exceeds limit of 1000000]` and i don't know how to fix it i need to find that parameter but when i do substitution  is said this there is any way for hundle this situation 

help-parameter.mw

1 2 3 4 5 6 7 Last Page 1 of 2218