This post in reply to the Question, 3D animation of rotation

Suppose that you wish to animate the whole view of a plot. By whole view, I mean that it includes the axes and is not just a rotation of a plotted object such as a surface.

One simple way to do this is to call plots:-animate (or plots:-display on a list of plots supplied in a list, with its `insequence=true` option). The option `orientation` would contain the parameter that governs the animation (or generates the sequence).

But that entails recreating the same plot each time. The plot data might not even change. The key thing that changes is the ORIENTATION() descriptor within each 3d plot object in the reulting data structure. So this is inefficient in two key ways, in the worst case scenario.

1) It may even compute the plot's numeric results, as many times as there are frames in the resulting animation.

2) It stores as many instances of the grid of computed numeric data as there are frames.

We'd like to do better, if possible, reducing down to a single computation of the data, and a single instance of storage of a grid of data.

To keep this understandable, I'll consider the simple case of plotting a single 3d surface. More complicated cases can be handled with revisions to the techniques.

Avoiding problem 1) can be done in more than one way. Instead of plotting an expression, a procedure could be plotted, where that procedure has `option remember` so that it automatically stores computed results an immediately returns precomputed stored result when the arguments (x and y values) have been used already.

Another way to avoid problem 1) is to generate the unrotated plot once, and then to use plottools:-rotate to generate the other grids without necessitating recomputation of the surface. But this rotates only objects in the plot, and does alter the view of the axes.

But both 1) and 2) can be solved together by simply re-using the grid of computed data from an initial plot3d call, and then constructing each frame's plot data structure component "manually". The only thing that has to change, in each, is the ORIENTATION(...) subobject.

At 300 frames, the difference in the following example (Intel i7, Windows 7 Pro 64bit, Maple 15.01) is a 10-fold speedup and a seven-fold reduction is memory allocation, for the creation of the animation structure. I'm not inlining all the plots into this post, as they all look the same.

restart:
P:=1+x+1*x^2-1*y+1*y^2+1*x*y:

st,ba:=time(),kernelopts(bytesalloc):

plots:-animate(plot3d,[P,x=-5..5,y=-5..5,orientation=[A,45,45],
                       axes=normal,labels=[x,y,z]],
               A=0..360,frames=300);

time()-st,kernelopts(bytesalloc)-ba;

                                1.217, 25685408
restart:
P:=1+x+1*x^2-1*y+1*y^2+1*x*y:

st,ba:=time(),kernelopts(bytesalloc):

g:=plot3d(P,x=-5..5,y=-5..5,orientation=[-47,666,-47],
          axes=normal,labels=[x,y,z]):

plots:-display([seq(PLOT3D(GRID(op([1,1..2],g),op([1,3],g)),
                           remove(type,[op(g)],
                                  specfunc(anything,{GRID,ORIENTATION}))[],
                           ORIENTATION(A,45,45)),
                    A=0..360,360.0/300)],
               insequence=true);

time()-st,kernelopts(bytesalloc)-ba;

                                0.125, 3538296

By creating the entire animation data structure manually, we can get a further factor of 3 improvement in speed and a further factor of 3 reduction in memory allocation.

restart:
P:=1+x+1*x^2-1*y+1*y^2+1*x*y:

st,ba:=time(),kernelopts(bytesalloc):

g:=plot3d(P,x=-5..5,y=-5..5,orientation=[-47,666,-47],
          axes=normal,labels=[x,y,z]):

PLOT3D(ANIMATE(seq([GRID(op([1,1..2],g),op([1,3],g)),
                           remove(type,[op(g)],
                                  specfunc(anything,{GRID,ORIENTATION}))[],
                           ORIENTATION(A,45,45)],
                    A=0..360,360.0/300)));

time()-st,kernelopts(bytesalloc)-ba;

                                0.046, 1179432                            

Unfortunately, control over the orientation is missing from Plot Components, otherwise such an "animation" could be programmed into a Button. That might be a nice functionality improvement, although it wouldn't be very nice unless accompanied by a way to export all a Plot Component's views to GIF (or mpeg!).

The above example produces animations each of 300 frames. Here's a 60-frame version:

acer


Please Wait...