The MRB constant is evaluated by

evalf(sum((-1)^n*(n^(1/n)-1), n = 1 .. infinity))

.1878596425

(1)

.

 

Now consider the following function

g := proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = 1 .. x) end proc

proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = 1 .. x) end proc

(2)

.

 

g(1) is 1^(1/1)-1.

evalf(g(1))

0.

(3)

g(2)*is*2^(1/2)-1+1^(1*1)-1 .

evalf(g(2))

.414213562

(4)

We could evaluate g(3) and so on.

evalf(g(3))

-0.28036008e-1

(5)

What happens if we sum g(1), g(2) and g(3) and then divide by 3?

(1/3)*evalf(sum(g(x), x = 1 .. 3))

.1287258513

(6)

What if we stop at larger numbers?

 

(1/100)*evalf(sum(g(x), x = 1 .. 100))

.1872388060

(7)

(1/1000)*evalf(sum(g(x), x = 1 .. 1000))

.1877875968

(8)

``

(1/2000)*evalf(sum(g(x), x = 1 .. 2000))

.1878231516

(9)

(1/3000)*evalf(sum(g(x), x = 1 .. 3000))

.1878352670

(10)

(1/10000)*evalf(sum(g(x), x = 1 .. 10000))

.1878520839

(11)

As the stopping number gets real large It looks like we arrive at the MRB constant again!

Can anyone help me explain why?

``

 

Download april222012.mw


Please Wait...