This post in reply to the Post, MRB constant N part 2

This post can be downloaded here:  Download May202012.mw

Below we have approximations involving the MRB constant. The MRB constant plus a fraction is saved as P while a combination of another constant is saved as Q. We then subtract Q from P and always have a very small result!

Digits:=22

Let c be the MRB constant

c := .1878596424620671202485179340542732300559030949001387

 

 

 

 

 

Let ch be the Champernowne Constan.

ch := .123456789101112131415161718192021

P := c+21/29

Q := (1/5)*(10520*ch+1)/(2001*ch+38)

P-Q = -4.4940*10^(-18) 

 

 

 


 

Let H9 be the 9th Hundred-Dollar constant.

H9 := .7859336743503714545652439863275455829623954590618668

P := c+11/40

Q := (590*H9+3573)/(3*(9*H9+2900))

P-Q = 2.071*10^(-19)

``

 

 

let H10 be the 10th Hundred-Dollar constant.

H10 := 0.38375879792512261034071331862048391007930055940e-6

 P := c+7/33 

Q := (40709*H10-240)/(60*(449*H10-10))

P-Q = 1.8691*10^(-18)

 ````

``

Let r1 be the positive root of 1122113300 x^4-65158827, 

fsolve(1122113300*x^4-65158827, x)

r1 := .4908899454923701491405

P := c+10/33

Q := r1

P-Q = 1.4110*10^(-18)
````

``

Let r2 be the positive root of

745964900 x^4-17929383, 

fsolve(745964900*x^4-17929383, x)

r2 := .3937419954032435881006

P := c+7/34

Q := r2
P-Q = 2.7361*10^(-18)

 

``

Let B be the conjectured value of Bloch Constant.

B := .4718616534526817848744687936113161490770126217394432

P := c+11/34

Q := (4450*B-238)/(6001*B+809)

P-Q = -3.176*10^(-19)

``

`` 

Let F be the Fransén-Robinson Constant.

F := 2.8077702420285193652215011865577729323080859209301982

P := c+15/17

Q := (20882-2007*F)/(1050+4700*F)

 P-Q = -1.739*10^(-18)

 

 

 

``

Let p be the Pell constant.

 p := .5805775582048924022900438922970257477660467656073332

P := c+24/35 

Q := (10037*p-903)/(8500*p+702

 P-Q = 2.425*10^(-19)

``

``

 

Let d be the Dottie Number.

d := .7390851332151606416553120876738734040134117589007574

P := c+27/35

Q := (1880*d-4900)/(7307*d-9060)

P-Q = 1.4186*10^(-18)

 

 

``

Let pg be the Pogson's Ratio.

pg := 2.5118864315095801110850320677993273941585181007824754

P := c+32/35

Q := (10*pg+8033)/(-9870+6840*pg)

P-Q = -3.387*10^(-18)

 

 

``

Let B be the conjectured value of Bloch Constant.

B := .4718616534526817848744687936113161490770126217394432

P := c+5/37

Q := (631-1074*B)/(-3060+7300*B)

P-Q = -9.5444*10^(-18)

 

 

``

Let T1 be Trott's first constant.

T1 := .1084101512231113615112908114064150911221580909390909

.P := c+36/37

Q := -(260*T1+9200)/(1055*T1-8064)

P-Q = -7.86*10^(-19)

 

 

``

Let r be the rabbit constant.

r := .7098034428612913146417873994445755970125022057678605

P := c+16/19

Q := (81-10900*r)/(6434*r-12000)

P-Q = -2.973*10^(-18) 

 

 

Let Lz be Lieb's square ice constant.

Lz := 1.5396007178390020386910634146718865483936046700536716

P := c+7/41

Q := -(36*Lz-120)/(406*Lz-445)

P-Q = -3.82447*10^(-17)

 

 

Let Vt be the mean cube-in-tetrahedron volume.

Vt := 0.1384277574023640804683588379635363373365e-1

P := c+36/41

Q := -(12000*Vt-1602)/(20090*Vt+1069)

P-Q = -2.3538*10^(-17)

  

``

Let tm be the magic angle [http://en.wikipedia.org/wiki/Magic_angle], .

tm := evalf(arcsec(sqrt(3)))

P := c+16/21

Q := (805*tm+2958)/(3040*tm+1020)

P-Q = 1.3096*10^(-18)

 

 

 


This has been branched into the following page(s):
Please Wait...