I didn't put it in the title, but of course this is a post about Advent of Code, in particular Days 16 and 18 which feature a perenial favorite type of problem: finding shortest paths in mazes.

Your input for these is always a maze given as an ascii map.  Like so:

###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#....#....#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S......#.#...#
###############

There's lots of ways to import one of these into Maple and then solve the maze, but I am to highlight how to do it with GraphTheory.  I am going to start with a GridGraph and then remove the walls in order to leave a just the vertices that represent the paths:

with(StringTools): with(GraphTheory):
maze:=
"###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#....#....#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S......#.#...#
###############
":
mazelines := (Split(Trim(maze), "\n")):
sgrid := ListTools:-Reverse((map(Explode, mazelines)) ):
m,n := nops(sgrid), nops(sgrid[1]);
tgrid := table([seq(seq([i,j]=sgrid[i,j],i=1..m),j=1..n)]):
start := lhs(select(e->rhs(e)="S", [entries(tgrid,'pairs')])[]);
finish := lhs(select(e->rhs(e)="E", [entries(tgrid,'pairs')])[]);

Now the maze is stored in the table tgrid, and it is easy to find the walls and paths.  In a GridGraph the vertices are labeled with their coordinates as "x,y" and so we rewrite our list of paths in that form, so we can create the induced subgraph of the Grid that includes only those vertices.

(walls,paths) := selectremove(e->rhs(e)="#", [entries(tgrid, 'pairs')]):
paths := map(s->sprintf("%d,%d",lhs(s)[]), paths):
H := SpecialGraphs:-GridGraph(m,n);
G := InducedSubgraph(H, paths);

We can use StyleVertex to highlight the start and finish.

StyleVertex(G, sprintf("%d,%d",start[]), color="LimeGreen");
StyleVertex(G, sprintf("%d,%d",finish[]), color="Red");

plots:-display(<
DrawGraph(H, stylesheet=[vertexshape="square", vertexborder=false, vertexcolor="Black"], showlabels=false) | 
DrawGraph(G, stylesheet=[vertexshape="square", vertexborder=false, vertexcolor="Black"], showlabels=false)>);

(I omitted a step where I set the vertex locations of the maze grid, you can see that in the attached worksheet)

Now finding a path through the maze is as easy as calling GraphTheory:-ShortestPath

sp := ShortestPath(G, sprintf("%d,%d",start[]), sprintf("%d,%d",finish[]) ):

StyleVertex(G, sp[2..-2], color="Orange");
StyleEdge(G, [seq({sp[i],sp[i+1]}, i=1..nops(sp)-1)], color="Orange");
DrawGraph(G, stylesheet=[vertexshape="square", vertexpadding=10, vertexborder=false,
             vertexcolor="Black"],  showlabels=false, size=[800,800]);

Now, Advent of Code seldom gives you a completely simple maze like this, often these is a twist like having to calculate the costs of turns seperately from the cost of steps, or each direction or position has a seperate cost associated with it.

For example, Day 16 has us starting facing east, and then turns cost 1000, while moving forward costs 1. That sort of problem is no longer exactly a maze, instead of the vertices being representing an "x,y" position, instead you increase the number of vertices by a factor of 4, so that you have a vertex for every position and orientation "x,y,o" with edges of weight 1 between adjacent vertices with the same orientation and edges of wieght 1000 to connect "x,y,N" to "x,y,E" and "x,y,W" e.g.  In that sort of weighted graph, we can use GraphTheory:-DijkstrasAlgorithm to find the shortest path and it's weighted cost.

In this code, we expand our list of maze locations with directions, and the use the grid table to generate a list of weighted edges:

dtable := table([0=[0,1], 1=[1,0], 2=[0,-1], 3=[-1,0]]):
dname := table([0="N",1="E",2="S",3="W"]):
dpaths := map(s->local d;seq(cat(s,",",d), d in ["N","E","S","W"]), paths):

edges := NULL:
for i from 1 to m do for j from 1 to n do
    if tgrid[[i,j]] = "#" then next; end if;
    for d from 0 to 3 do
        dir := dtable[d];
        if tgrid[[i,j]+dir] <> "#" then
            edges := edges, [{cat("",i,",",j,",",dname[d]), cat("",i+dir[1],",",j+dir[2],",",dname[d])},1];
        end if;
        edges := edges, [{cat("",i,",",j,",",dname[d]), cat("",i,",",j,",",dname[d+1 mod 4])}, 1000],
                 [{cat("",i,",",j,",",dname[d]), cat("",i,",",j,",",dname[d-1 mod 4])}, 1000];
    end do;
end do; end do:

Gd := Graph(dpaths,weighted,{edges});

Once that is done, it's a simple matter of calling Dijkstra's Algorithm on the graph, but notice that we can reach the finsh while traveling north or east, so we need to find the sortest path to both (you can pass a list of vertices to Dijkstra, and it will efficiently calculate paths to all of them), and select the smaller of the two:

spds := DijkstrasAlgorithm(Gd, cat("",start[1],",",start[2],",E"), 
    [cat("",finish[1],",",finish[2],",N"), cat("",finish[1],",",finish[2],",E")] , 
    distance):
i := min[index](map2(op,2,spds)):
spd := spds[i];

spd := [["2,2,E", "3,2,E", "4,2,E", "4,2,N", "4,3,N", "4,4,N", "4,5,N", "4,6,N", "4,6,E", "5,6,E",
 "6,6,E", "7,6,E", "8,6,E", "8,6,N", "8,7,N", "8,8,N", "8,9,N", "8,10,N", "8,11,N", "8,12,N", 
"8,12,W", "7,12,W", "6,12,W", "5,12,W", "4,12,W", "3,12,W", "2,12,W", "2,12,N", "2,13,N", 
"2,14,N", "2,14,E", "3,14,E", "4,14,E", "5,14,E", "6,14,E", "7,14,E", "8,14,E", "9,14,E", 
"10,14,E", "11,14,E", "12,14,E", "13,14,E", "14,14,E"], 6036]

We can then plot to compare this to the unweighted shortest path:

dsp := ListTools:-MakeUnique( map(s->s[1..-3], spd[1]) );
StyleVertex(G, dsp[2..-2], color="DarkBlue");
StyleEdge(G, [seq({dsp[i],dsp[i+1]}, i=1..nops(dsp)-1)], color="DarkBlue");

DrawGraph(G, stylesheet=[vertexshape="square", vertexpadding=10,
             vertexborder=false, vertexcolor="Black"],  showlabels=false,
          size=[800,800]);

And you can see it's a path that requires more steps, but definitely uses fewer turns if we start facing east/right (6 vs. 9):

I hope this has given you a little bit of a flavor of how to use GraphTheory commands to solve path finding problems.  Like with the second part here, usually the biggest challenge is figuring out how to encode and construct a graph that represents your problem.  Then the actual commands to solve it, are easy. You can see all the code, and a couple steps I left out from above in this worksheet: Mazeblog.mw

And just for fun, here's a Maple workbook that imports a maze from an image and solves it: MazeFromImage.maple

with(ImageTools): with(GraphTheory):

opic := Read("this://DrawnMaze.png"):
Embed(opic);

bwpic := RGBtoGray(opic):
pic := Flip(Transpose(Scale(bwpic, 0.1, 0.1, method = nearest)),horizontal ):

m,n := upperbound(pic);
start := [2,31];
finish := [30,1];

31, 31

 

[2, 31]

 

[30, 1]

(1)

(paths,walls) := selectremove(e->round(rhs(e))=1, [entries(pic, 'pairs')]):
walls := map(s->sprintf("%d,%d",lhs(s)), walls):
paths := map(s->sprintf("%d,%d",lhs(s)), paths):

H := SpecialGraphs:-GridGraph(m,n);
G := InducedSubgraph(H, paths);

GRAPHLN(undirected, unweighted, ["1,1", "1,2", "1,3", "1,4", "1,5", "1,6", "1,7", "1,8", "1,9", "1,10", "1,11", "1,12", "1,13", "1,14", "1,15", "1,16", "1,17", "1,18", "1,19", "1,20", "1,21", "1,22", "1,23", "1,24", "1,25", "1,26", "1,27", "1,28", "1,29", "1,30", "1,31", "2,1", "2,2", "2,3", "2,4", "2,5", "2,6", "2,7", "2,8", "2,9", "2,10", "2,11", "2,12", "2,13", "2,14", "2,15", "2,16", "2,17", "2,18", "2,19", "2,20", "2,21", "2,22", "2,23", "2,24", "2,25", "2,26", "2,27", "2,28", "2,29", "2,30", "2,31", "3,1", "3,2", "3,3", "3,4", "3,5", "3,6", "3,7", "3,8", "3,9", "3,10", "3,11", "3,12", "3,13", "3,14", "3,15", "3,16", "3,17", "3,18", "3,19", "3,20", "3,21", "3,22", "3,23", "3,24", "3,25", "3,26", "3,27", "3,28", "3,29", "3,30", "3,31", "4,1", "4,2", "4,3", "4,4", "4,5", "4,6", "4,7", "4,8", "4,9", "4,10", "4,11", "4,12", "4,13", "4,14", "4,15", "4,16", "4,17", "4,18", "4,19", "4,20", "4,21", "4,22", "4,23", "4,24", "4,25", "4,26", "4,27", "4,28", "4,29", "4,30", "4,31", "5,1", "5,2", "5,3", "5,4", "5,5", "5,6", "5,7", "5,8", "5,9", "5,10", "5,11", "5,12", "5,13", "5,14", "5,15", "5,16", "5,17", "5,18", "5,19", "5,20", "5,21", "5,22", "5,23", "5,24", "5,25", "5,26", "5,27", "5,28", "5,29", "5,30", "5,31", "6,1", "6,2", "6,3", "6,4", "6,5", "6,6", "6,7", "6,8", "6,9", "6,10", "6,11", "6,12", "6,13", "6,14", "6,15", "6,16", "6,17", "6,18", "6,19", "6,20", "6,21", "6,22", "6,23", "6,24", "6,25", "6,26", "6,27", "6,28", "6,29", "6,30", "6,31", "7,1", "7,2", "7,3", "7,4", "7,5", "7,6", "7,7", "7,8", "7,9", "7,10", "7,11", "7,12", "7,13", "7,14", "7,15", "7,16", "7,17", "7,18", "7,19", "7,20", "7,21", "7,22", "7,23", "7,24", "7,25", "7,26", "7,27", "7,28", "7,29", "7,30", "7,31", "8,1", "8,2", "8,3", "8,4", "8,5", "8,6", "8,7", "8,8", "8,9", "8,10", "8,11", "8,12", "8,13", "8,14", "8,15", "8,16", "8,17", "8,18", "8,19", "8,20", "8,21", "8,22", "8,23", "8,24", "8,25", "8,26", "8,27", "8,28", "8,29", "8,30", "8,31", "9,1", "9,2", "9,3", "9,4", "9,5", "9,6", "9,7", "9,8", "9,9", "9,10", "9,11", "9,12", "9,13", "9,14", "9,15", "9,16", "9,17", "9,18", "9,19", "9,20", "9,21", "9,22", "9,23", "9,24", "9,25", "9,26", "9,27", "9,28", "9,29", "9,30", "9,31", "10,1", "10,2", "10,3", "10,4", "10,5", "10,6", "10,7", "10,8", "10,9", "10,10", "10,11", "10,12", "10,13", "10,14", "10,15", "10,16", "10,17", "10,18", "10,19", "10,20", "10,21", "10,22", "10,23", "10,24", "10,25", "10,26", "10,27", "10,28", "10,29", "10,30", "10,31", "11,1", "11,2", "11,3", "11,4", "11,5", "11,6", "11,7", "11,8", "11,9", "11,10", "11,11", "11,12", "11,13", "11,14", "11,15", "11,16", "11,17", "11,18", "11,19", "11,20", "11,21", "11,22", "11,23", "11,24", "11,25", "11,26", "11,27", "11,28", "11,29", "11,30", "11,31", "12,1", "12,2", "12,3", "12,4", "12,5", "12,6", "12,7", "12,8", "12,9", "12,10", "12,11", "12,12", "12,13", "12,14", "12,15", "12,16", "12,17", "12,18", "12,19", "12,20", "12,21", "12,22", "12,23", "12,24", "12,25", "12,26", "12,27", "12,28", "12,29", "12,30", "12,31", "13,1", "13,2", "13,3", "13,4", "13,5", "13,6", "13,7", "13,8", "13,9", "13,10", "13,11", "13,12", "13,13", "13,14", "13,15", "13,16", "13,17", "13,18", "13,19", "13,20", "13,21", "13,22", "13,23", "13,24", "13,25", "13,26", "13,27", "13,28", "13,29", "13,30", "13,31", "14,1", "14,2", "14,3", "14,4", "14,5", "14,6", "14,7", "14,8", "14,9", "14,10", "14,11", "14,12", "14,13", "14,14", "14,15", "14,16", "14,17", "14,18", "14,19", "14,20", "14,21", "14,22", "14,23", "14,24", "14,25", "14,26", "14,27", "14,28", "14,29", "14,30", "14,31", "15,1", "15,2", "15,3", "15,4", "15,5", "15,6", "15,7", "15,8", "15,9", "15,10", "15,11", "15,12", "15,13", "15,14", "15,15", "15,16", "15,17", "15,18", "15,19", "15,20", "15,21", "15,22", "15,23", "15,24", "15,25", "15,26", "15,27", "15,28", "15,29", "15,30", "15,31", "16,1", "16,2", "16,3", "16,4", "16,5", "16,6", "16,7", "16,8", "16,9", "16,10", "16,11", "16,12", "16,13", "16,14", "16,15", "16,16", "16,17", "16,18", "16,19", "16,20", "16,21", "16,22", "16,23", "16,24", "16,25", "16,26", "16,27", "16,28", "16,29", "16,30", "16,31", "17,1", "17,2", "17,3", "17,4", "17,5", "17,6", "17,7", "17,8", "17,9", "17,10", "17,11", "17,12", "17,13", "17,14", "17,15", "17,16", "17,17", "17,18", "17,19", "17,20", "17,21", "17,22", "17,23", "17,24", "17,25", "17,26", "17,27", "17,28", "17,29", "17,30", "17,31", "18,1", "18,2", "18,3", "18,4", "18,5", "18,6", "18,7", "18,8", "18,9", "18,10", "18,11", "18,12", "18,13", "18,14", "18,15", "18,16", "18,17", "18,18", "18,19", "18,20", "18,21", "18,22", "18,23", "18,24", "18,25", "18,26", "18,27", "18,28", "18,29", "18,30", "18,31", "19,1", "19,2", "19,3", "19,4", "19,5", "19,6", "19,7", "19,8", "19,9", "19,10", "19,11", "19,12", "19,13", "19,14", "19,15", "19,16", "19,17", "19,18", "19,19", "19,20", "19,21", "19,22", "19,23", "19,24", "19,25", "19,26", "19,27", "19,28", "19,29", "19,30", "19,31", "20,1", "20,2", "20,3", "20,4", "20,5", "20,6", "20,7", "20,8", "20,9", "20,10", "20,11", "20,12", "20,13", "20,14", "20,15", "20,16", "20,17", "20,18", "20,19", "20,20", "20,21", "20,22", "20,23", "20,24", "20,25", "20,26", "20,27", "20,28", "20,29", "20,30", "20,31", "21,1", "21,2", "21,3", "21,4", "21,5", "21,6", "21,7", "21,8", "21,9", "21,10", "21,11", "21,12", "21,13", "21,14", "21,15", "21,16", "21,17", "21,18", "21,19", "21,20", "21,21", "21,22", "21,23", "21,24", "21,25", "21,26", "21,27", "21,28", "21,29", "21,30", "21,31", "22,1", "22,2", "22,3", "22,4", "22,5", "22,6", "22,7", "22,8", "22,9", "22,10", "22,11", "22,12", "22,13", "22,14", "22,15", "22,16", "22,17", "22,18", "22,19", "22,20", "22,21", "22,22", "22,23", "22,24", "22,25", "22,26", "22,27", "22,28", "22,29", "22,30", "22,31", "23,1", "23,2", "23,3", "23,4", "23,5", "23,6", "23,7", "23,8", "23,9", "23,10", "23,11", "23,12", "23,13", "23,14", "23,15", "23,16", "23,17", "23,18", "23,19", "23,20", "23,21", "23,22", "23,23", "23,24", "23,25", "23,26", "23,27", "23,28", "23,29", "23,30", "23,31", "24,1", "24,2", "24,3", "24,4", "24,5", "24,6", "24,7", "24,8", "24,9", "24,10", "24,11", "24,12", "24,13", "24,14", "24,15", "24,16", "24,17", "24,18", "24,19", "24,20", "24,21", "24,22", "24,23", "24,24", "24,25", "24,26", "24,27", "24,28", "24,29", "24,30", "24,31", "25,1", "25,2", "25,3", "25,4", "25,5", "25,6", "25,7", "25,8", "25,9", "25,10", "25,11", "25,12", "25,13", "25,14", "25,15", "25,16", "25,17", "25,18", "25,19", "25,20", "25,21", "25,22", "25,23", "25,24", "25,25", "25,26", "25,27", "25,28", "25,29", "25,30", "25,31", "26,1", "26,2", "26,3", "26,4", "26,5", "26,6", "26,7", "26,8", "26,9", "26,10", "26,11", "26,12", "26,13", "26,14", "26,15", "26,16", "26,17", "26,18", "26,19", "26,20", "26,21", "26,22", "26,23", "26,24", "26,25", "26,26", "26,27", "26,28", "26,29", "26,30", "26,31", "27,1", "27,2", "27,3", "27,4", "27,5", "27,6", "27,7", "27,8", "27,9", "27,10", "27,11", "27,12", "27,13", "27,14", "27,15", "27,16", "27,17", "27,18", "27,19", "27,20", "27,21", "27,22", "27,23", "27,24", "27,25", "27,26", "27,27", "27,28", "27,29", "27,30", "27,31", "28,1", "28,2", "28,3", "28,4", "28,5", "28,6", "28,7", "28,8", "28,9", "28,10", "28,11", "28,12", "28,13", "28,14", "28,15", "28,16", "28,17", "28,18", "28,19", "28,20", "28,21", "28,22", "28,23", "28,24", "28,25", "28,26", "28,27", "28,28", "28,29", "28,30", "28,31", "29,1", "29,2", "29,3", "29,4", "29,5", "29,6", "29,7", "29,8", "29,9", "29,10", "29,11", "29,12", "29,13", "29,14", "29,15", "29,16", "29,17", "29,18", "29,19", "29,20", "29,21", "29,22", "29,23", "29,24", "29,25", "29,26", "29,27", "29,28", "29,29", "29,30", "29,31", "30,1", "30,2", "30,3", "30,4", "30,5", "30,6", "30,7", "30,8", "30,9", "30,10", "30,11", "30,12", "30,13", "30,14", "30,15", "30,16", "30,17", "30,18", "30,19", "30,20", "30,21", "30,22", "30,23", "30,24", "30,25", "30,26", "30,27", "30,28", "30,29", "30,30", "30,31", "31,1", "31,2", "31,3", "31,4", "31,5", "31,6", "31,7", "31,8", "31,9", "31,10", "31,11", "31,12", "31,13", "31,14", "31,15", "31,16", "31,17", "31,18", "31,19", "31,20", "31,21", "31,22", "31,23", "31,24", "31,25", "31,26", "31,27", "31,28", "31,29", "31,30", "31,31"], Array(1..961, {(1) = {2, 32}, (2) = {1, 3, 33}, (3) = {2, 4, 34}, (4) = {3, 5, 35}, (5) = {4, 6, 36}, (6) = {5, 7, 37}, (7) = {6, 8, 38}, (8) = {7, 9, 39}, (9) = {8, 10, 40}, (10) = {9, 11, 41}, (11) = {10, 12, 42}, (12) = {11, 13, 43}, (13) = {12, 14, 44}, (14) = {13, 15, 45}, (15) = {14, 16, 46}, (16) = {15, 17, 47}, (17) = {16, 18, 48}, (18) = {17, 19, 49}, (19) = {18, 20, 50}, (20) = {19, 21, 51}, (21) = {20, 22, 52}, (22) = {21, 23, 53}, (23) = {22, 24, 54}, (24) = {23, 25, 55}, (25) = {24, 26, 56}, (26) = {25, 27, 57}, (27) = {26, 28, 58}, (28) = {27, 29, 59}, (29) = {28, 30, 60}, (30) = {29, 31, 61}, (31) = {30, 62}, (32) = {1, 33, 63}, (33) = {2, 32, 34, 64}, (34) = {3, 33, 35, 65}, (35) = {4, 34, 36, 66}, (36) = {5, 35, 37, 67}, (37) = {6, 36, 38, 68}, (38) = {7, 37, 39, 69}, (39) = {8, 38, 40, 70}, (40) = {9, 39, 41, 71}, (41) = {10, 40, 42, 72}, (42) = {11, 41, 43, 73}, (43) = {12, 42, 44, 74}, (44) = {13, 43, 45, 75}, (45) = {14, 44, 46, 76}, (46) = {15, 45, 47, 77}, (47) = {16, 46, 48, 78}, (48) = {17, 47, 49, 79}, (49) = {18, 48, 50, 80}, (50) = {19, 49, 51, 81}, (51) = {20, 50, 52, 82}, (52) = {21, 51, 53, 83}, (53) = {22, 52, 54, 84}, (54) = {23, 53, 55, 85}, (55) = {24, 54, 56, 86}, (56) = {25, 55, 57, 87}, (57) = {26, 56, 58, 88}, (58) = {27, 57, 59, 89}, (59) = {28, 58, 60, 90}, (60) = {29, 59, 61, 91}, (61) = {30, 60, 62, 92}, (62) = {31, 61, 93}, (63) = {32, 64, 94}, (64) = {33, 63, 65, 95}, (65) = {34, 64, 66, 96}, (66) = {35, 65, 67, 97}, (67) = {36, 66, 68, 98}, (68) = {37, 67, 69, 99}, (69) = {38, 68, 70, 100}, (70) = {39, 69, 71, 101}, (71) = {40, 70, 72, 102}, (72) = {41, 71, 73, 103}, (73) = {42, 72, 74, 104}, (74) = {43, 73, 75, 105}, (75) = {44, 74, 76, 106}, (76) = {45, 75, 77, 107}, (77) = {46, 76, 78, 108}, (78) = {47, 77, 79, 109}, (79) = {48, 78, 80, 110}, (80) = {49, 79, 81, 111}, (81) = {50, 80, 82, 112}, (82) = {51, 81, 83, 113}, (83) = {52, 82, 84, 114}, (84) = {53, 83, 85, 115}, (85) = {54, 84, 86, 116}, (86) = {55, 85, 87, 117}, (87) = {56, 86, 88, 118}, (88) = {57, 87, 89, 119}, (89) = {58, 88, 90, 120}, (90) = {59, 89, 91, 121}, (91) = {60, 90, 92, 122}, (92) = {61, 91, 93, 123}, (93) = {62, 92, 124}, (94) = {63, 95, 125}, (95) = {64, 94, 96, 126}, (96) = {65, 95, 97, 127}, (97) = {66, 96, 98, 128}, (98) = {67, 97, 99, 129}, (99) = {68, 98, 100, 130}, (100) = {69, 99, 101, 131}, (101) = {70, 100, 102, 132}, (102) = {71, 101, 103, 133}, (103) = {72, 102, 104, 134}, (104) = {73, 103, 105, 135}, (105) = {74, 104, 106, 136}, (106) = {75, 105, 107, 137}, (107) = {76, 106, 108, 138}, (108) = {77, 107, 109, 139}, (109) = {78, 108, 110, 140}, (110) = {79, 109, 111, 141}, (111) = {80, 110, 112, 142}, (112) = {81, 111, 113, 143}, (113) = {82, 112, 114, 144}, (114) = {83, 113, 115, 145}, (115) = {84, 114, 116, 146}, (116) = {85, 115, 117, 147}, (117) = {86, 116, 118, 148}, (118) = {87, 117, 119, 149}, (119) = {88, 118, 120, 150}, (120) = {89, 119, 121, 151}, (121) = {90, 120, 122, 152}, (122) = {91, 121, 123, 153}, (123) = {92, 122, 124, 154}, (124) = {93, 123, 155}, (125) = {94, 126, 156}, (126) = {95, 125, 127, 157}, (127) = {96, 126, 128, 158}, (128) = {97, 127, 129, 159}, (129) = {98, 128, 130, 160}, (130) = {99, 129, 131, 161}, (131) = {100, 130, 132, 162}, (132) = {101, 131, 133, 163}, (133) = {102, 132, 134, 164}, (134) = {103, 133, 135, 165}, (135) = {104, 134, 136, 166}, (136) = {105, 135, 137, 167}, (137) = {106, 136, 138, 168}, (138) = {107, 137, 139, 169}, (139) = {108, 138, 140, 170}, (140) = {109, 139, 141, 171}, (141) = {110, 140, 142, 172}, (142) = {111, 141, 143, 173}, (143) = {112, 142, 144, 174}, (144) = {113, 143, 145, 175}, (145) = {114, 144, 146, 176}, (146) = {115, 145, 147, 177}, (147) = {116, 146, 148, 178}, (148) = {117, 147, 149, 179}, (149) = {118, 148, 150, 180}, (150) = {119, 149, 151, 181}, (151) = {120, 150, 152, 182}, (152) = {121, 151, 153, 183}, (153) = {122, 152, 154, 184}, (154) = {123, 153, 155, 185}, (155) = {124, 154, 186}, (156) = {125, 157, 187}, (157) = {126, 156, 158, 188}, (158) = {127, 157, 159, 189}, (159) = {128, 158, 160, 190}, (160) = {129, 159, 161, 191}, (161) = {130, 160, 162, 192}, (162) = {131, 161, 163, 193}, (163) = {132, 162, 164, 194}, (164) = {133, 163, 165, 195}, (165) = {134, 164, 166, 196}, (166) = {135, 165, 167, 197}, (167) = {136, 166, 168, 198}, (168) = {137, 167, 169, 199}, (169) = {138, 168, 170, 200}, (170) = {139, 169, 171, 201}, (171) = {140, 170, 172, 202}, (172) = {141, 171, 173, 203}, (173) = {142, 172, 174, 204}, (174) = {143, 173, 175, 205}, (175) = {144, 174, 176, 206}, (176) = {145, 175, 177, 207}, (177) = {146, 176, 178, 208}, (178) = {147, 177, 179, 209}, (179) = {148, 178, 180, 210}, (180) = {149, 179, 181, 211}, (181) = {150, 180, 182, 212}, (182) = {151, 181, 183, 213}, (183) = {152, 182, 184, 214}, (184) = {153, 183, 185, 215}, (185) = {154, 184, 186, 216}, (186) = {155, 185, 217}, (187) = {156, 188, 218}, (188) = {157, 187, 189, 219}, (189) = {158, 188, 190, 220}, (190) = {159, 189, 191, 221}, (191) = {160, 190, 192, 222}, (192) = {161, 191, 193, 223}, (193) = {162, 192, 194, 224}, (194) = {163, 193, 195, 225}, (195) = {164, 194, 196, 226}, (196) = {165, 195, 197, 227}, (197) = {166, 196, 198, 228}, (198) = {167, 197, 199, 229}, (199) = {168, 198, 200, 230}, (200) = {169, 199, 201, 231}, (201) = {170, 200, 202, 232}, (202) = {171, 201, 203, 233}, (203) = {172, 202, 204, 234}, (204) = {173, 203, 205, 235}, (205) = {174, 204, 206, 236}, (206) = {175, 205, 207, 237}, (207) = {176, 206, 208, 238}, (208) = {177, 207, 209, 239}, (209) = {178, 208, 210, 240}, (210) = {179, 209, 211, 241}, (211) = {180, 210, 212, 242}, (212) = {181, 211, 213, 243}, (213) = {182, 212, 214, 244}, (214) = {183, 213, 215, 245}, (215) = {184, 214, 216, 246}, (216) = {185, 215, 217, 247}, (217) = {186, 216, 248}, (218) = {187, 219, 249}, (219) = {188, 218, 220, 250}, (220) = {189, 219, 221, 251}, (221) = {190, 220, 222, 252}, (222) = {191, 221, 223, 253}, (223) = {192, 222, 224, 254}, (224) = {193, 223, 225, 255}, (225) = {194, 224, 226, 256}, (226) = {195, 225, 227, 257}, (227) = {196, 226, 228, 258}, (228) = {197, 227, 229, 259}, (229) = {198, 228, 230, 260}, (230) = {199, 229, 231, 261}, (231) = {200, 230, 232, 262}, (232) = {201, 231, 233, 263}, (233) = {202, 232, 234, 264}, (234) = {203, 233, 235, 265}, (235) = {204, 234, 236, 266}, (236) = {205, 235, 237, 267}, (237) = {206, 236, 238, 268}, (238) = {207, 237, 239, 269}, (239) = {208, 238, 240, 270}, (240) = {209, 239, 241, 271}, (241) = {210, 240, 242, 272}, (242) = {211, 241, 243, 273}, (243) = {212, 242, 244, 274}, (244) = {213, 243, 245, 275}, (245) = {214, 244, 246, 276}, (246) = {215, 245, 247, 277}, (247) = {216, 246, 248, 278}, (248) = {217, 247, 279}, (249) = {218, 250, 280}, (250) = {219, 249, 251, 281}, (251) = {220, 250, 252, 282}, (252) = {221, 251, 253, 283}, (253) = {222, 252, 254, 284}, (254) = {223, 253, 255, 285}, (255) = {224, 254, 256, 286}, (256) = {225, 255, 257, 287}, (257) = {226, 256, 258, 288}, (258) = {227, 257, 259, 289}, (259) = {228, 258, 260, 290}, (260) = {229, 259, 261, 291}, (261) = {230, 260, 262, 292}, (262) = {231, 261, 263, 293}, (263) = {232, 262, 264, 294}, (264) = {233, 263, 265, 295}, (265) = {234, 264, 266, 296}, (266) = {235, 265, 267, 297}, (267) = {236, 266, 268, 298}, (268) = {237, 267, 269, 299}, (269) = {238, 268, 270, 300}, (270) = {239, 269, 271, 301}, (271) = {240, 270, 272, 302}, (272) = {241, 271, 273, 303}, (273) = {242, 272, 274, 304}, (274) = {243, 273, 275, 305}, (275) = {244, 274, 276, 306}, (276) = {245, 275, 277, 307}, (277) = {246, 276, 278, 308}, (278) = {247, 277, 279, 309}, (279) = {248, 278, 310}, (280) = {249, 281, 311}, (281) = {250, 280, 282, 312}, (282) = {251, 281, 283, 313}, (283) = {252, 282, 284, 314}, (284) = {253, 283, 285, 315}, (285) = {254, 284, 286, 316}, (286) = {255, 285, 287, 317}, (287) = {256, 286, 288, 318}, (288) = {257, 287, 289, 319}, (289) = {258, 288, 290, 320}, (290) = {259, 289, 291, 321}, (291) = {260, 290, 292, 322}, (292) = {261, 291, 293, 323}, (293) = {262, 292, 294, 324}, (294) = {263, 293, 295, 325}, (295) = {264, 294, 296, 326}, (296) = {265, 295, 297, 327}, (297) = {266, 296, 298, 328}, (298) = {267, 297, 299, 329}, (299) = {268, 298, 300, 330}, (300) = {269, 299, 301, 331}, (301) = {270, 300, 302, 332}, (302) = {271, 301, 303, 333}, (303) = {272, 302, 304, 334}, (304) = {273, 303, 305, 335}, (305) = {274, 304, 306, 336}, (306) = {275, 305, 307, 337}, (307) = {276, 306, 308, 338}, (308) = {277, 307, 309, 339}, (309) = {278, 308, 310, 340}, (310) = {279, 309, 341}, (311) = {280, 312, 342}, (312) = {281, 311, 313, 343}, (313) = {282, 312, 314, 344}, (314) = {283, 313, 315, 345}, (315) = {284, 314, 316, 346}, (316) = {285, 315, 317, 347}, (317) = {286, 316, 318, 348}, (318) = {287, 317, 319, 349}, (319) = {288, 318, 320, 350}, (320) = {289, 319, 321, 351}, (321) = {290, 320, 322, 352}, (322) = {291, 321, 323, 353}, (323) = {292, 322, 324, 354}, (324) = {293, 323, 325, 355}, (325) = {294, 324, 326, 356}, (326) = {295, 325, 327, 357}, (327) = {296, 326, 328, 358}, (328) = {297, 327, 329, 359}, (329) = {298, 328, 330, 360}, (330) = {299, 329, 331, 361}, (331) = {300, 330, 332, 362}, (332) = {301, 331, 333, 363}, (333) = {302, 332, 334, 364}, (334) = {303, 333, 335, 365}, (335) = {304, 334, 336, 366}, (336) = {305, 335, 337, 367}, (337) = {306, 336, 338, 368}, (338) = {307, 337, 339, 369}, (339) = {308, 338, 340, 370}, (340) = {309, 339, 341, 371}, (341) = {310, 340, 372}, (342) = {311, 343, 373}, (343) = {312, 342, 344, 374}, (344) = {313, 343, 345, 375}, (345) = {314, 344, 346, 376}, (346) = {315, 345, 347, 377}, (347) = {316, 346, 348, 378}, (348) = {317, 347, 349, 379}, (349) = {318, 348, 350, 380}, (350) = {319, 349, 351, 381}, (351) = {320, 350, 352, 382}, (352) = {321, 351, 353, 383}, (353) = {322, 352, 354, 384}, (354) = {323, 353, 355, 385}, (355) = {324, 354, 356, 386}, (356) = {325, 355, 357, 387}, (357) = {326, 356, 358, 388}, (358) = {327, 357, 359, 389}, (359) = {328, 358, 360, 390}, (360) = {329, 359, 361, 391}, (361) = {330, 360, 362, 392}, (362) = {331, 361, 363, 393}, (363) = {332, 362, 364, 394}, (364) = {333, 363, 365, 395}, (365) = {334, 364, 366, 396}, (366) = {335, 365, 367, 397}, (367) = {336, 366, 368, 398}, (368) = {337, 367, 369, 399}, (369) = {338, 368, 370, 400}, (370) = {339, 369, 371, 401}, (371) = {340, 370, 372, 402}, (372) = {341, 371, 403}, (373) = {342, 374, 404}, (374) = {343, 373, 375, 405}, (375) = {344, 374, 376, 406}, (376) = {345, 375, 377, 407}, (377) = {346, 376, 378, 408}, (378) = {347, 377, 379, 409}, (379) = {348, 378, 380, 410}, (380) = {349, 379, 381, 411}, (381) = {350, 380, 382, 412}, (382) = {351, 381, 383, 413}, (383) = {352, 382, 384, 414}, (384) = {353, 383, 385, 415}, (385) = {354, 384, 386, 416}, (386) = {355, 385, 387, 417}, (387) = {356, 386, 388, 418}, (388) = {357, 387, 389, 419}, (389) = {358, 388, 390, 420}, (390) = {359, 389, 391, 421}, (391) = {360, 390, 392, 422}, (392) = {361, 391, 393, 423}, (393) = {362, 392, 394, 424}, (394) = {363, 393, 395, 425}, (395) = {364, 394, 396, 426}, (396) = {365, 395, 397, 427}, (397) = {366, 396, 398, 428}, (398) = {367, 397, 399, 429}, (399) = {368, 398, 400, 430}, (400) = {369, 399, 401, 431}, (401) = {370, 400, 402, 432}, (402) = {371, 401, 403, 433}, (403) = {372, 402, 434}, (404) = {373, 405, 435}, (405) = {374, 404, 406, 436}, (406) = {375, 405, 407, 437}, (407) = {376, 406, 408, 438}, (408) = {377, 407, 409, 439}, (409) = {378, 408, 410, 440}, (410) = {379, 409, 411, 441}, (411) = {380, 410, 412, 442}, (412) = {381, 411, 413, 443}, (413) = {382, 412, 414, 444}, (414) = {383, 413, 415, 445}, (415) = {384, 414, 416, 446}, (416) = {385, 415, 417, 447}, (417) = {386, 416, 418, 448}, (418) = {387, 417, 419, 449}, (419) = {388, 418, 420, 450}, (420) = {389, 419, 421, 451}, (421) = {390, 420, 422, 452}, (422) = {391, 421, 423, 453}, (423) = {392, 422, 424, 454}, (424) = {393, 423, 425, 455}, (425) = {394, 424, 426, 456}, (426) = {395, 425, 427, 457}, (427) = {396, 426, 428, 458}, (428) = {397, 427, 429, 459}, (429) = {398, 428, 430, 460}, (430) = {399, 429, 431, 461}, (431) = {400, 430, 432, 462}, (432) = {401, 431, 433, 463}, (433) = {402, 432, 434, 464}, (434) = {403, 433, 465}, (435) = {404, 436, 466}, (436) = {405, 435, 437, 467}, (437) = {406, 436, 438, 468}, (438) = {407, 437, 439, 469}, (439) = {408, 438, 440, 470}, (440) = {409, 439, 441, 471}, (441) = {410, 440, 442, 472}, (442) = {411, 441, 443, 473}, (443) = {412, 442, 444, 474}, (444) = {413, 443, 445, 475}, (445) = {414, 444, 446, 476}, (446) = {415, 445, 447, 477}, (447) = {416, 446, 448, 478}, (448) = {417, 447, 449, 479}, (449) = {418, 448, 450, 480}, (450) = {419, 449, 451, 481}, (451) = {420, 450, 452, 482}, (452) = {421, 451, 453, 483}, (453) = {422, 452, 454, 484}, (454) = {423, 453, 455, 485}, (455) = {424, 454, 456, 486}, (456) = {425, 455, 457, 487}, (457) = {426, 456, 458, 488}, (458) = {427, 457, 459, 489}, (459) = {428, 458, 460, 490}, (460) = {429, 459, 461, 491}, (461) = {430, 460, 462, 492}, (462) = {431, 461, 463, 493}, (463) = {432, 462, 464, 494}, (464) = {433, 463, 465, 495}, (465) = {434, 464, 496}, (466) = {435, 467, 497}, (467) = {436, 466, 468, 498}, (468) = {437, 467, 469, 499}, (469) = {438, 468, 470, 500}, (470) = {439, 469, 471, 501}, (471) = {440, 470, 472, 502}, (472) = {441, 471, 473, 503}, (473) = {442, 472, 474, 504}, (474) = {443, 473, 475, 505}, (475) = {444, 474, 476, 506}, (476) = {445, 475, 477, 507}, (477) = {446, 476, 478, 508}, (478) = {447, 477, 479, 509}, (479) = {448, 478, 480, 510}, (480) = {449, 479, 481, 511}, (481) = {450, 480, 482, 512}, (482) = {451, 481, 483, 513}, (483) = {452, 482, 484, 514}, (484) = {453, 483, 485, 515}, (485) = {454, 484, 486, 516}, (486) = {455, 485, 487, 517}, (487) = {456, 486, 488, 518}, (488) = {457, 487, 489, 519}, (489) = {458, 488, 490, 520}, (490) = {459, 489, 491, 521}, (491) = {460, 490, 492, 522}, (492) = {461, 491, 493, 523}, (493) = {462, 492, 494, 524}, (494) = {463, 493, 495, 525}, (495) = {464, 494, 496, 526}, (496) = {465, 495, 527}, (497) = {466, 498, 528}, (498) = {467, 497, 499, 529}, (499) = {468, 498, 500, 530}, (500) = {469, 499, 501, 531}, (501) = {470, 500, 502, 532}, (502) = {471, 501, 503, 533}, (503) = {472, 502, 504, 534}, (504) = {473, 503, 505, 535}, (505) = {474, 504, 506, 536}, (506) = {475, 505, 507, 537}, (507) = {476, 506, 508, 538}, (508) = {477, 507, 509, 539}, (509) = {478, 508, 510, 540}, (510) = {479, 509, 511, 541}, (511) = {480, 510, 512, 542}, (512) = {481, 511, 513, 543}, (513) = {482, 512, 514, 544}, (514) = {483, 513, 515, 545}, (515) = {484, 514, 516, 546}, (516) = {485, 515, 517, 547}, (517) = {486, 516, 518, 548}, (518) = {487, 517, 519, 549}, (519) = {488, 518, 520, 550}, (520) = {489, 519, 521, 551}, (521) = {490, 520, 522, 552}, (522) = {491, 521, 523, 553}, (523) = {492, 522, 524, 554}, (524) = {493, 523, 525, 555}, (525) = {494, 524, 526, 556}, (526) = {495, 525, 527, 557}, (527) = {496, 526, 558}, (528) = {497, 529, 559}, (529) = {498, 528, 530, 560}, (530) = {499, 529, 531, 561}, (531) = {500, 530, 532, 562}, (532) = {501, 531, 533, 563}, (533) = {502, 532, 534, 564}, (534) = {503, 533, 535, 565}, (535) = {504, 534, 536, 566}, (536) = {505, 535, 537, 567}, (537) = {506, 536, 538, 568}, (538) = {507, 537, 539, 569}, (539) = {508, 538, 540, 570}, (540) = {509, 539, 541, 571}, (541) = {510, 540, 542, 572}, (542) = {511, 541, 543, 573}, (543) = {512, 542, 544, 574}, (544) = {513, 543, 545, 575}, (545) = {514, 544, 546, 576}, (546) = {515, 545, 547, 577}, (547) = {516, 546, 548, 578}, (548) = {517, 547, 549, 579}, (549) = {518, 548, 550, 580}, (550) = {519, 549, 551, 581}, (551) = {520, 550, 552, 582}, (552) = {521, 551, 553, 583}, (553) = {522, 552, 554, 584}, (554) = {523, 553, 555, 585}, (555) = {524, 554, 556, 586}, (556) = {525, 555, 557, 587}, (557) = {526, 556, 558, 588}, (558) = {527, 557, 589}, (559) = {528, 560, 590}, (560) = {529, 559, 561, 591}, (561) = {530, 560, 562, 592}, (562) = {531, 561, 563, 593}, (563) = {532, 562, 564, 594}, (564) = {533, 563, 565, 595}, (565) = {534, 564, 566, 596}, (566) = {535, 565, 567, 597}, (567) = {536, 566, 568, 598}, (568) = {537, 567, 569, 599}, (569) = {538, 568, 570, 600}, (570) = {539, 569, 571, 601}, (571) = {540, 570, 572, 602}, (572) = {541, 571, 573, 603}, (573) = {542, 572, 574, 604}, (574) = {543, 573, 575, 605}, (575) = {544, 574, 576, 606}, (576) = {545, 575, 577, 607}, (577) = {546, 576, 578, 608}, (578) = {547, 577, 579, 609}, (579) = {548, 578, 580, 610}, (580) = {549, 579, 581, 611}, (581) = {550, 580, 582, 612}, (582) = {551, 581, 583, 613}, (583) = {552, 582, 584, 614}, (584) = {553, 583, 585, 615}, (585) = {554, 584, 586, 616}, (586) = {555, 585, 587, 617}, (587) = {556, 586, 588, 618}, (588) = {557, 587, 589, 619}, (589) = {558, 588, 620}, (590) = {559, 591, 621}, (591) = {560, 590, 592, 622}, (592) = {561, 591, 593, 623}, (593) = {562, 592, 594, 624}, (594) = {563, 593, 595, 625}, (595) = {564, 594, 596, 626}, (596) = {565, 595, 597, 627}, (597) = {566, 596, 598, 628}, (598) = {567, 597, 599, 629}, (599) = {568, 598, 600, 630}, (600) = {569, 599, 601, 631}, (601) = {570, 600, 602, 632}, (602) = {571, 601, 603, 633}, (603) = {572, 602, 604, 634}, (604) = {573, 603, 605, 635}, (605) = {574, 604, 606, 636}, (606) = {575, 605, 607, 637}, (607) = {576, 606, 608, 638}, (608) = {577, 607, 609, 639}, (609) = {578, 608, 610, 640}, (610) = {579, 609, 611, 641}, (611) = {580, 610, 612, 642}, (612) = {581, 611, 613, 643}, (613) = {582, 612, 614, 644}, (614) = {583, 613, 615, 645}, (615) = {584, 614, 616, 646}, (616) = {585, 615, 617, 647}, (617) = {586, 616, 618, 648}, (618) = {587, 617, 619, 649}, (619) = {588, 618, 620, 650}, (620) = {589, 619, 651}, (621) = {590, 622, 652}, (622) = {591, 621, 623, 653}, (623) = {592, 622, 624, 654}, (624) = {593, 623, 625, 655}, (625) = {594, 624, 626, 656}, (626) = {595, 625, 627, 657}, (627) = {596, 626, 628, 658}, (628) = {597, 627, 629, 659}, (629) = {598, 628, 630, 660}, (630) = {599, 629, 631, 661}, (631) = {600, 630, 632, 662}, (632) = {601, 631, 633, 663}, (633) = {602, 632, 634, 664}, (634) = {603, 633, 635, 665}, (635) = {604, 634, 636, 666}, (636) = {605, 635, 637, 667}, (637) = {606, 636, 638, 668}, (638) = {607, 637, 639, 669}, (639) = {608, 638, 640, 670}, (640) = {609, 639, 641, 671}, (641) = {610, 640, 642, 672}, (642) = {611, 641, 643, 673}, (643) = {612, 642, 644, 674}, (644) = {613, 643, 645, 675}, (645) = {614, 644, 646, 676}, (646) = {615, 645, 647, 677}, (647) = {616, 646, 648, 678}, (648) = {617, 647, 649, 679}, (649) = {618, 648, 650, 680}, (650) = {619, 649, 651, 681}, (651) = {620, 650, 682}, (652) = {621, 653, 683}, (653) = {622, 652, 654, 684}, (654) = {623, 653, 655, 685}, (655) = {624, 654, 656, 686}, (656) = {625, 655, 657, 687}, (657) = {626, 656, 658, 688}, (658) = {627, 657, 659, 689}, (659) = {628, 658, 660, 690}, (660) = {629, 659, 661, 691}, (661) = {630, 660, 662, 692}, (662) = {631, 661, 663, 693}, (663) = {632, 662, 664, 694}, (664) = {633, 663, 665, 695}, (665) = {634, 664, 666, 696}, (666) = {635, 665, 667, 697}, (667) = {636, 666, 668, 698}, (668) = {637, 667, 669, 699}, (669) = {638, 668, 670, 700}, (670) = {639, 669, 671, 701}, (671) = {640, 670, 672, 702}, (672) = {641, 671, 673, 703}, (673) = {642, 672, 674, 704}, (674) = {643, 673, 675, 705}, (675) = {644, 674, 676, 706}, (676) = {645, 675, 677, 707}, (677) = {646, 676, 678, 708}, (678) = {647, 677, 679, 709}, (679) = {648, 678, 680, 710}, (680) = {649, 679, 681, 711}, (681) = {650, 680, 682, 712}, (682) = {651, 681, 713}, (683) = {652, 684, 714}, (684) = {653, 683, 685, 715}, (685) = {654, 684, 686, 716}, (686) = {655, 685, 687, 717}, (687) = {656, 686, 688, 718}, (688) = {657, 687, 689, 719}, (689) = {658, 688, 690, 720}, (690) = {659, 689, 691, 721}, (691) = {660, 690, 692, 722}, (692) = {661, 691, 693, 723}, (693) = {662, 692, 694, 724}, (694) = {663, 693, 695, 725}, (695) = {664, 694, 696, 726}, (696) = {665, 695, 697, 727}, (697) = {666, 696, 698, 728}, (698) = {667, 697, 699, 729}, (699) = {668, 698, 700, 730}, (700) = {669, 699, 701, 731}, (701) = {670, 700, 702, 732}, (702) = {671, 701, 703, 733}, (703) = {672, 702, 704, 734}, (704) = {673, 703, 705, 735}, (705) = {674, 704, 706, 736}, (706) = {675, 705, 707, 737}, (707) = {676, 706, 708, 738}, (708) = {677, 707, 709, 739}, (709) = {678, 708, 710, 740}, (710) = {679, 709, 711, 741}, (711) = {680, 710, 712, 742}, (712) = {681, 711, 713, 743}, (713) = {682, 712, 744}, (714) = {683, 715, 745}, (715) = {684, 714, 716, 746}, (716) = {685, 715, 717, 747}, (717) = {686, 716, 718, 748}, (718) = {687, 717, 719, 749}, (719) = {688, 718, 720, 750}, (720) = {689, 719, 721, 751}, (721) = {690, 720, 722, 752}, (722) = {691, 721, 723, 753}, (723) = {692, 722, 724, 754}, (724) = {693, 723, 725, 755}, (725) = {694, 724, 726, 756}, (726) = {695, 725, 727, 757}, (727) = {696, 726, 728, 758}, (728) = {697, 727, 729, 759}, (729) = {698, 728, 730, 760}, (730) = {699, 729, 731, 761}, (731) = {700, 730, 732, 762}, (732) = {701, 731, 733, 763}, (733) = {702, 732, 734, 764}, (734) = {703, 733, 735, 765}, (735) = {704, 734, 736, 766}, (736) = {705, 735, 737, 767}, (737) = {706, 736, 738, 768}, (738) = {707, 737, 739, 769}, (739) = {708, 738, 740, 770}, (740) = {709, 739, 741, 771}, (741) = {710, 740, 742, 772}, (742) = {711, 741, 743, 773}, (743) = {712, 742, 744, 774}, (744) = {713, 743, 775}, (745) = {714, 746, 776}, (746) = {715, 745, 747, 777}, (747) = {716, 746, 748, 778}, (748) = {717, 747, 749, 779}, (749) = {718, 748, 750, 780}, (750) = {719, 749, 751, 781}, (751) = {720, 750, 752, 782}, (752) = {721, 751, 753, 783}, (753) = {722, 752, 754, 784}, (754) = {723, 753, 755, 785}, (755) = {724, 754, 756, 786}, (756) = {725, 755, 757, 787}, (757) = {726, 756, 758, 788}, (758) = {727, 757, 759, 789}, (759) = {728, 758, 760, 790}, (760) = {729, 759, 761, 791}, (761) = {730, 760, 762, 792}, (762) = {731, 761, 763, 793}, (763) = {732, 762, 764, 794}, (764) = {733, 763, 765, 795}, (765) = {734, 764, 766, 796}, (766) = {735, 765, 767, 797}, (767) = {736, 766, 768, 798}, (768) = {737, 767, 769, 799}, (769) = {738, 768, 770, 800}, (770) = {739, 769, 771, 801}, (771) = {740, 770, 772, 802}, (772) = {741, 771, 773, 803}, (773) = {742, 772, 774, 804}, (774) = {743, 773, 775, 805}, (775) = {744, 774, 806}, (776) = {745, 777, 807}, (777) = {746, 776, 778, 808}, (778) = {747, 777, 779, 809}, (779) = {748, 778, 780, 810}, (780) = {749, 779, 781, 811}, (781) = {750, 780, 782, 812}, (782) = {751, 781, 783, 813}, (783) = {752, 782, 784, 814}, (784) = {753, 783, 785, 815}, (785) = {754, 784, 786, 816}, (786) = {755, 785, 787, 817}, (787) = {756, 786, 788, 818}, (788) = {757, 787, 789, 819}, (789) = {758, 788, 790, 820}, (790) = {759, 789, 791, 821}, (791) = {760, 790, 792, 822}, (792) = {761, 791, 793, 823}, (793) = {762, 792, 794, 824}, (794) = {763, 793, 795, 825}, (795) = {764, 794, 796, 826}, (796) = {765, 795, 797, 827}, (797) = {766, 796, 798, 828}, (798) = {767, 797, 799, 829}, (799) = {768, 798, 800, 830}, (800) = {769, 799, 801, 831}, (801) = {770, 800, 802, 832}, (802) = {771, 801, 803, 833}, (803) = {772, 802, 804, 834}, (804) = {773, 803, 805, 835}, (805) = {774, 804, 806, 836}, (806) = {775, 805, 837}, (807) = {776, 808, 838}, (808) = {777, 807, 809, 839}, (809) = {778, 808, 810, 840}, (810) = {779, 809, 811, 841}, (811) = {780, 810, 812, 842}, (812) = {781, 811, 813, 843}, (813) = {782, 812, 814, 844}, (814) = {783, 813, 815, 845}, (815) = {784, 814, 816, 846}, (816) = {785, 815, 817, 847}, (817) = {786, 816, 818, 848}, (818) = {787, 817, 819, 849}, (819) = {788, 818, 820, 850}, (820) = {789, 819, 821, 851}, (821) = {790, 820, 822, 852}, (822) = {791, 821, 823, 853}, (823) = {792, 822, 824, 854}, (824) = {793, 823, 825, 855}, (825) = {794, 824, 826, 856}, (826) = {795, 825, 827, 857}, (827) = {796, 826, 828, 858}, (828) = {797, 827, 829, 859}, (829) = {798, 828, 830, 860}, (830) = {799, 829, 831, 861}, (831) = {800, 830, 832, 862}, (832) = {801, 831, 833, 863}, (833) = {802, 832, 834, 864}, (834) = {803, 833, 835, 865}, (835) = {804, 834, 836, 866}, (836) = {805, 835, 837, 867}, (837) = {806, 836, 868}, (838) = {807, 839, 869}, (839) = {808, 838, 840, 870}, (840) = {809, 839, 841, 871}, (841) = {810, 840, 842, 872}, (842) = {811, 841, 843, 873}, (843) = {812, 842, 844, 874}, (844) = {813, 843, 845, 875}, (845) = {814, 844, 846, 876}, (846) = {815, 845, 847, 877}, (847) = {816, 846, 848, 878}, (848) = {817, 847, 849, 879}, (849) = {818, 848, 850, 880}, (850) = {819, 849, 851, 881}, (851) = {820, 850, 852, 882}, (852) = {821, 851, 853, 883}, (853) = {822, 852, 854, 884}, (854) = {823, 853, 855, 885}, (855) = {824, 854, 856, 886}, (856) = {825, 855, 857, 887}, (857) = {826, 856, 858, 888}, (858) = {827, 857, 859, 889}, (859) = {828, 858, 860, 890}, (860) = {829, 859, 861, 891}, (861) = {830, 860, 862, 892}, (862) = {831, 861, 863, 893}, (863) = {832, 862, 864, 894}, (864) = {833, 863, 865, 895}, (865) = {834, 864, 866, 896}, (866) = {835, 865, 867, 897}, (867) = {836, 866, 868, 898}, (868) = {837, 867, 899}, (869) = {838, 870, 900}, (870) = {839, 869, 871, 901}, (871) = {840, 870, 872, 902}, (872) = {841, 871, 873, 903}, (873) = {842, 872, 874, 904}, (874) = {843, 873, 875, 905}, (875) = {844, 874, 876, 906}, (876) = {845, 875, 877, 907}, (877) = {846, 876, 878, 908}, (878) = {847, 877, 879, 909}, (879) = {848, 878, 880, 910}, (880) = {849, 879, 881, 911}, (881) = {850, 880, 882, 912}, (882) = {851, 881, 883, 913}, (883) = {852, 882, 884, 914}, (884) = {853, 883, 885, 915}, (885) = {854, 884, 886, 916}, (886) = {855, 885, 887, 917}, (887) = {856, 886, 888, 918}, (888) = {857, 887, 889, 919}, (889) = {858, 888, 890, 920}, (890) = {859, 889, 891, 921}, (891) = {860, 890, 892, 922}, (892) = {861, 891, 893, 923}, (893) = {862, 892, 894, 924}, (894) = {863, 893, 895, 925}, (895) = {864, 894, 896, 926}, (896) = {865, 895, 897, 927}, (897) = {866, 896, 898, 928}, (898) = {867, 897, 899, 929}, (899) = {868, 898, 930}, (900) = {869, 901, 931}, (901) = {870, 900, 902, 932}, (902) = {871, 901, 903, 933}, (903) = {872, 902, 904, 934}, (904) = {873, 903, 905, 935}, (905) = {874, 904, 906, 936}, (906) = {875, 905, 907, 937}, (907) = {876, 906, 908, 938}, (908) = {877, 907, 909, 939}, (909) = {878, 908, 910, 940}, (910) = {879, 909, 911, 941}, (911) = {880, 910, 912, 942}, (912) = {881, 911, 913, 943}, (913) = {882, 912, 914, 944}, (914) = {883, 913, 915, 945}, (915) = {884, 914, 916, 946}, (916) = {885, 915, 917, 947}, (917) = {886, 916, 918, 948}, (918) = {887, 917, 919, 949}, (919) = {888, 918, 920, 950}, (920) = {889, 919, 921, 951}, (921) = {890, 920, 922, 952}, (922) = {891, 921, 923, 953}, (923) = {892, 922, 924, 954}, (924) = {893, 923, 925, 955}, (925) = {894, 924, 926, 956}, (926) = {895, 925, 927, 957}, (927) = {896, 926, 928, 958}, (928) = {897, 927, 929, 959}, (929) = {898, 928, 930, 960}, (930) = {899, 929, 961}, (931) = {900, 932}, (932) = {901, 931, 933}, (933) = {902, 932, 934}, (934) = {903, 933, 935}, (935) = {904, 934, 936}, (936) = {905, 935, 937}, (937) = {906, 936, 938}, (938) = {907, 937, 939}, (939) = {908, 938, 940}, (940) = {909, 939, 941}, (941) = {910, 940, 942}, (942) = {911, 941, 943}, (943) = {912, 942, 944}, (944) = {913, 943, 945}, (945) = {914, 944, 946}, (946) = {915, 945, 947}, (947) = {916, 946, 948}, (948) = {917, 947, 949}, (949) = {918, 948, 950}, (950) = {919, 949, 951}, (951) = {920, 950, 952}, (952) = {921, 951, 953}, (953) = {922, 952, 954}, (954) = {923, 953, 955}, (955) = {924, 954, 956}, (956) = {925, 955, 957}, (957) = {926, 956, 958}, (958) = {927, 957, 959}, (959) = {928, 958, 960}, (960) = {929, 959, 961}, (961) = {930, 960}}), `GRAPHLN/table/1`, 0)

 

GRAPHLN(undirected, unweighted, ["2,2", "2,3", "2,4", "2,5", "2,6", "2,7", "2,8", "2,9", "2,10", "2,11", "2,12", "2,13", "2,14", "2,15", "2,16", "2,18", "2,19", "2,20", "2,21", "2,22", "2,23", "2,24", "2,25", "2,26", "2,27", "2,28", "2,29", "2,30", "2,31", "3,2", "3,16", "3,18", "3,26", "4,2", "4,3", "4,4", "4,5", "4,6", "4,7", "4,8", "4,9", "4,10", "4,11", "4,12", "4,13", "4,14", "4,16", "4,18", "4,19", "4,20", "4,21", "4,22", "4,23", "4,24", "4,26", "4,27", "4,28", "4,29", "4,30", "5,2", "5,14", "5,16", "5,24", "5,30", "6,2", "6,3", "6,4", "6,5", "6,6", "6,7", "6,8", "6,9", "6,10", "6,11", "6,12", "6,14", "6,16", "6,17", "6,18", "6,19", "6,20", "6,21", "6,22", "6,23", "6,24", "6,26", "6,27", "6,28", "6,30", "7,12", "7,14", "7,24", "7,26", "7,28", "7,30", "8,2", "8,3", "8,4", "8,5", "8,6", "8,7", "8,8", "8,9", "8,10", "8,11", "8,12", "8,14", "8,15", "8,16", "8,17", "8,18", "8,19", "8,20", "8,21", "8,22", "8,24", "8,26", "8,28", "8,30", "9,2", "9,22", "9,24", "9,26", "9,28", "9,30", "10,2", "10,4", "10,5", "10,6", "10,7", "10,8", "10,9", "10,10", "10,11", "10,12", "10,13", "10,14", "10,15", "10,16", "10,17", "10,18", "10,20", "10,22", "10,24", "10,26", "10,28", "10,30", "11,2", "11,4", "11,18", "11,20", "11,22", "11,24", "11,26", "11,28", "11,30", "12,2", "12,4", "12,6", "12,7", "12,8", "12,9", "12,10", "12,11", "12,12", "12,13", "12,14", "12,15", "12,16", "12,17", "12,18", "12,20", "12,22", "12,24", "12,26", "12,28", "12,29", "12,30", "13,2", "13,4", "13,6", "13,18", "13,20", "13,22", "13,24", "14,2", "14,4", "14,6", "14,8", "14,9", "14,10", "14,12", "14,13", "14,14", "14,15", "14,16", "14,18", "14,20", "14,22", "14,24", "14,25", "14,26", "14,27", "14,28", "14,29", "14,30", "15,2", "15,4", "15,6", "15,8", "15,10", "15,12", "15,14", "15,16", "15,18", "15,20", "15,22", "15,30", "16,2", "16,3", "16,4", "16,6", "16,8", "16,10", "16,12", "16,14", "16,16", "16,18", "16,20", "16,22", "16,23", "16,24", "16,26", "16,27", "16,28", "16,30", "17,6", "17,8", "17,10", "17,12", "17,14", "17,16", "17,18", "17,20", "17,24", "17,26", "17,28", "17,30", "18,2", "18,3", "18,4", "18,5", "18,6", "18,8", "18,10", "18,12", "18,14", "18,16", "18,18", "18,20", "18,21", "18,22", "18,24", "18,26", "18,28", "18,30", "19,2", "19,8", "19,10", "19,12", "19,14", "19,16", "19,18", "19,20", "19,22", "19,24", "19,26", "19,28", "19,30", "20,2", "20,3", "20,4", "20,5", "20,6", "20,7", "20,8", "20,10", "20,12", "20,14", "20,16", "20,18", "20,20", "20,22", "20,24", "20,26", "20,28", "20,30", "21,10", "21,12", "21,14", "21,16", "21,18", "21,20", "21,22", "21,24", "21,26", "21,28", "21,30", "22,2", "22,3", "22,4", "22,5", "22,6", "22,7", "22,8", "22,9", "22,10", "22,12", "22,14", "22,16", "22,18", "22,20", "22,22", "22,24", "22,26", "22,28", "22,29", "22,30", "23,2", "23,12", "23,14", "23,16", "23,18", "23,20", "23,22", "23,24", "23,26", "24,2", "24,4", "24,5", "24,6", "24,7", "24,8", "24,9", "24,10", "24,11", "24,12", "24,14", "24,16", "24,18", "24,20", "24,22", "24,24", "24,26", "24,27", "24,28", "24,29", "24,30", "25,2", "25,14", "25,16", "25,18", "25,20", "25,22", "25,24", "26,2", "26,4", "26,5", "26,6", "26,7", "26,8", "26,9", "26,10", "26,11", "26,12", "26,14", "26,16", "26,18", "26,20", "26,22", "26,24", "26,25", "26,26", "26,27", "26,28", "26,29", "26,30", "27,2", "27,4", "27,12", "27,14", "27,16", "27,18", "27,20", "27,22", "27,30", "28,2", "28,4", "28,6", "28,7", "28,8", "28,9", "28,10", "28,11", "28,12", "28,14", "28,16", "28,18", "28,20", "28,22", "28,23", "28,24", "28,26", "28,27", "28,28", "28,30", "29,4", "29,6", "29,14", "29,16", "29,18", "29,20", "29,24", "29,26", "29,28", "29,30", "30,1", "30,2", "30,3", "30,4", "30,6", "30,7", "30,8", "30,9", "30,10", "30,11", "30,12", "30,13", "30,14", "30,16", "30,17", "30,18", "30,20", "30,21", "30,22", "30,24", "30,25", "30,26", "30,28", "30,29", "30,30"], Array(1..451, {(1) = {2, 30}, (2) = {1, 3}, (3) = {2, 4}, (4) = {3, 5}, (5) = {4, 6}, (6) = {5, 7}, (7) = {6, 8}, (8) = {7, 9}, (9) = {8, 10}, (10) = {9, 11}, (11) = {10, 12}, (12) = {11, 13}, (13) = {12, 14}, (14) = {13, 15}, (15) = {14, 31}, (16) = {17, 32}, (17) = {16, 18}, (18) = {17, 19}, (19) = {18, 20}, (20) = {19, 21}, (21) = {20, 22}, (22) = {21, 23}, (23) = {22, 24}, (24) = {23, 25, 33}, (25) = {24, 26}, (26) = {25, 27}, (27) = {26, 28}, (28) = {27, 29}, (29) = {28}, (30) = {1, 34}, (31) = {15, 47}, (32) = {16, 48}, (33) = {24, 55}, (34) = {30, 35, 60}, (35) = {34, 36}, (36) = {35, 37}, (37) = {36, 38}, (38) = {37, 39}, (39) = {38, 40}, (40) = {39, 41}, (41) = {40, 42}, (42) = {41, 43}, (43) = {42, 44}, (44) = {43, 45}, (45) = {44, 46}, (46) = {45, 61}, (47) = {31, 62}, (48) = {32, 49}, (49) = {48, 50}, (50) = {49, 51}, (51) = {50, 52}, (52) = {51, 53}, (53) = {52, 54}, (54) = {53, 63}, (55) = {33, 56}, (56) = {55, 57}, (57) = {56, 58}, (58) = {57, 59}, (59) = {58, 64}, (60) = {34, 65}, (61) = {46, 76}, (62) = {47, 77}, (63) = {54, 85}, (64) = {59, 89}, (65) = {60, 66}, (66) = {65, 67}, (67) = {66, 68}, (68) = {67, 69}, (69) = {68, 70}, (70) = {69, 71}, (71) = {70, 72}, (72) = {71, 73}, (73) = {72, 74}, (74) = {73, 75}, (75) = {74, 90}, (76) = {61, 91}, (77) = {62, 78}, (78) = {77, 79}, (79) = {78, 80}, (80) = {79, 81}, (81) = {80, 82}, (82) = {81, 83}, (83) = {82, 84}, (84) = {83, 85}, (85) = {63, 84, 92}, (86) = {87, 93}, (87) = {86, 88}, (88) = {87, 94}, (89) = {64, 95}, (90) = {75, 106}, (91) = {76, 107}, (92) = {85, 116}, (93) = {86, 117}, (94) = {88, 118}, (95) = {89, 119}, (96) = {97, 120}, (97) = {96, 98}, (98) = {97, 99}, (99) = {98, 100}, (100) = {99, 101}, (101) = {100, 102}, (102) = {101, 103}, (103) = {102, 104}, (104) = {103, 105}, (105) = {104, 106}, (106) = {90, 105}, (107) = {91, 108}, (108) = {107, 109}, (109) = {108, 110}, (110) = {109, 111}, (111) = {110, 112}, (112) = {111, 113}, (113) = {112, 114}, (114) = {113, 115}, (115) = {114, 121}, (116) = {92, 122}, (117) = {93, 123}, (118) = {94, 124}, (119) = {95, 125}, (120) = {96, 126}, (121) = {115, 143}, (122) = {116, 144}, (123) = {117, 145}, (124) = {118, 146}, (125) = {119, 147}, (126) = {120, 148}, (127) = {128, 149}, (128) = {127, 129}, (129) = {128, 130}, (130) = {129, 131}, (131) = {130, 132}, (132) = {131, 133}, (133) = {132, 134}, (134) = {133, 135}, (135) = {134, 136}, (136) = {135, 137}, (137) = {136, 138}, (138) = {137, 139}, (139) = {138, 140}, (140) = {139, 141}, (141) = {140, 150}, (142) = {151}, (143) = {121, 152}, (144) = {122, 153}, (145) = {123, 154}, (146) = {124, 155}, (147) = {125, 156}, (148) = {126, 157}, (149) = {127, 158}, (150) = {141, 171}, (151) = {142, 172}, (152) = {143, 173}, (153) = {144, 174}, (154) = {145, 175}, (155) = {146, 176}, (156) = {147, 178}, (157) = {148, 179}, (158) = {149, 180}, (159) = {160, 181}, (160) = {159, 161}, (161) = {160, 162}, (162) = {161, 163}, (163) = {162, 164}, (164) = {163, 165}, (165) = {164, 166}, (166) = {165, 167}, (167) = {166, 168}, (168) = {167, 169}, (169) = {168, 170}, (170) = {169, 171}, (171) = {150, 170, 182}, (172) = {151, 183}, (173) = {152, 184}, (174) = {153, 185}, (175) = {154}, (176) = {155, 177}, (177) = {176, 178}, (178) = {156, 177}, (179) = {157, 186}, (180) = {158, 187}, (181) = {159, 188}, (182) = {171, 197}, (183) = {172, 198}, (184) = {173, 199}, (185) = {174, 200}, (186) = {179, 207}, (187) = {180, 208}, (188) = {181, 209}, (189) = {190, 210}, (190) = {189, 191}, (191) = {190, 211}, (192) = {193, 212}, (193) = {192, 194}, (194) = {193, 195, 213}, (195) = {194, 196}, (196) = {195, 214}, (197) = {182, 215}, (198) = {183, 216}, (199) = {184, 217}, (200) = {185, 201}, (201) = {200, 202}, (202) = {201, 203}, (203) = {202, 204}, (204) = {203, 205}, (205) = {204, 206}, (206) = {205, 218}, (207) = {186, 219}, (208) = {187, 221}, (209) = {188, 222}, (210) = {189, 223}, (211) = {191, 224}, (212) = {192, 225}, (213) = {194, 226}, (214) = {196, 227}, (215) = {197, 228}, (216) = {198, 229}, (217) = {199, 230}, (218) = {206, 236}, (219) = {207, 220}, (220) = {219, 221}, (221) = {208, 220}, (222) = {209, 237}, (223) = {210, 238}, (224) = {211, 239}, (225) = {212, 240}, (226) = {213, 241}, (227) = {214, 242}, (228) = {215, 243}, (229) = {216, 244}, (230) = {217, 231}, (231) = {230, 232}, (232) = {231, 245}, (233) = {234, 246}, (234) = {233, 235}, (235) = {234, 247}, (236) = {218, 248}, (237) = {222, 253}, (238) = {223, 254}, (239) = {224, 255}, (240) = {225, 256}, (241) = {226, 257}, (242) = {227, 258}, (243) = {228, 259}, (244) = {229, 260}, (245) = {232, 263}, (246) = {233, 264}, (247) = {235, 265}, (248) = {236, 266}, (249) = {250, 267}, (250) = {249, 251}, (251) = {250, 252}, (252) = {251, 253}, (253) = {237, 252}, (254) = {238, 268}, (255) = {239, 269}, (256) = {240, 270}, (257) = {241, 271}, (258) = {242, 272}, (259) = {243, 273}, (260) = {244, 261, 274}, (261) = {260, 262}, (262) = {261, 275}, (263) = {245, 276}, (264) = {246, 277}, (265) = {247, 278}, (266) = {248, 279}, (267) = {249, 280}, (268) = {254, 286}, (269) = {255, 287}, (270) = {256, 288}, (271) = {257, 289}, (272) = {258, 290}, (273) = {259, 291}, (274) = {260, 292}, (275) = {262, 293}, (276) = {263, 294}, (277) = {264, 295}, (278) = {265, 296}, (279) = {266, 297}, (280) = {267, 281}, (281) = {280, 282}, (282) = {281, 283}, (283) = {282, 284}, (284) = {283, 285}, (285) = {284, 286}, (286) = {268, 285}, (287) = {269, 298}, (288) = {270, 299}, (289) = {271, 300}, (290) = {272, 301}, (291) = {273, 302}, (292) = {274, 303}, (293) = {275, 304}, (294) = {276, 305}, (295) = {277, 306}, (296) = {278, 307}, (297) = {279, 308}, (298) = {287, 317}, (299) = {288, 318}, (300) = {289, 319}, (301) = {290, 320}, (302) = {291, 321}, (303) = {292, 322}, (304) = {293, 323}, (305) = {294, 324}, (306) = {295, 325}, (307) = {296, 326}, (308) = {297, 328}, (309) = {310, 329}, (310) = {309, 311}, (311) = {310, 312}, (312) = {311, 313}, (313) = {312, 314}, (314) = {313, 315}, (315) = {314, 316}, (316) = {315, 317}, (317) = {298, 316}, (318) = {299, 330}, (319) = {300, 331}, (320) = {301, 332}, (321) = {302, 333}, (322) = {303, 334}, (323) = {304, 335}, (324) = {305, 336}, (325) = {306, 337}, (326) = {307, 327}, (327) = {326, 328}, (328) = {308, 327}, (329) = {309, 338}, (330) = {318, 347}, (331) = {319, 348}, (332) = {320, 349}, (333) = {321, 350}, (334) = {322, 351}, (335) = {323, 352}, (336) = {324, 353}, (337) = {325, 354}, (338) = {329, 359}, (339) = {340}, (340) = {339, 341}, (341) = {340, 342}, (342) = {341, 343}, (343) = {342, 344}, (344) = {343, 345}, (345) = {344, 346}, (346) = {345, 347}, (347) = {330, 346}, (348) = {331, 360}, (349) = {332, 361}, (350) = {333, 362}, (351) = {334, 363}, (352) = {335, 364}, (353) = {336, 365}, (354) = {337, 355}, (355) = {354, 356}, (356) = {355, 357}, (357) = {356, 358}, (358) = {357}, (359) = {338, 366}, (360) = {348, 376}, (361) = {349, 377}, (362) = {350, 378}, (363) = {351, 379}, (364) = {352, 380}, (365) = {353, 381}, (366) = {359, 388}, (367) = {368, 389}, (368) = {367, 369}, (369) = {368, 370}, (370) = {369, 371}, (371) = {370, 372}, (372) = {371, 373}, (373) = {372, 374}, (374) = {373, 375}, (375) = {374, 390}, (376) = {360, 391}, (377) = {361, 392}, (378) = {362, 393}, (379) = {363, 394}, (380) = {364, 395}, (381) = {365, 382}, (382) = {381, 383}, (383) = {382, 384}, (384) = {383, 385}, (385) = {384, 386}, (386) = {385, 387}, (387) = {386, 396}, (388) = {366, 397}, (389) = {367, 398}, (390) = {375, 405}, (391) = {376, 406}, (392) = {377, 407}, (393) = {378, 408}, (394) = {379, 409}, (395) = {380, 410}, (396) = {387, 416}, (397) = {388}, (398) = {389, 417}, (399) = {400, 418}, (400) = {399, 401}, (401) = {400, 402}, (402) = {401, 403}, (403) = {402, 404}, (404) = {403, 405}, (405) = {390, 404}, (406) = {391, 419}, (407) = {392, 420}, (408) = {393, 421}, (409) = {394, 422}, (410) = {395, 411}, (411) = {410, 412}, (412) = {411, 423}, (413) = {414, 424}, (414) = {413, 415}, (415) = {414, 425}, (416) = {396, 426}, (417) = {398, 430}, (418) = {399, 431}, (419) = {406, 439}, (420) = {407, 440}, (421) = {408, 442}, (422) = {409, 443}, (423) = {412, 446}, (424) = {413, 448}, (425) = {415, 449}, (426) = {416, 451}, (427) = {428}, (428) = {427, 429}, (429) = {428, 430}, (430) = {417, 429}, (431) = {418, 432}, (432) = {431, 433}, (433) = {432, 434}, (434) = {433, 435}, (435) = {434, 436}, (436) = {435, 437}, (437) = {436, 438}, (438) = {437, 439}, (439) = {419, 438}, (440) = {420, 441}, (441) = {440, 442}, (442) = {421, 441}, (443) = {422, 444}, (444) = {443, 445}, (445) = {444}, (446) = {423, 447}, (447) = {446, 448}, (448) = {424, 447}, (449) = {425, 450}, (450) = {449, 451}, (451) = {426, 450}}), `GRAPHLN/table/2`, 0)

(2)

G := Graph(Edges(G));

GRAPHLN(undirected, unweighted, ["10,10", "10,11", "10,12", "10,13", "10,14", "10,15", "10,16", "10,17", "10,18", "10,2", "10,20", "10,22", "10,24", "10,26", "10,28", "10,30", "10,4", "10,5", "10,6", "10,7", "10,8", "10,9", "11,18", "11,2", "11,20", "11,22", "11,24", "11,26", "11,28", "11,30", "11,4", "12,10", "12,11", "12,12", "12,13", "12,14", "12,15", "12,16", "12,17", "12,18", "12,2", "12,20", "12,22", "12,24", "12,26", "12,28", "12,29", "12,30", "12,4", "12,6", "12,7", "12,8", "12,9", "13,18", "13,2", "13,20", "13,22", "13,24", "13,4", "13,6", "14,10", "14,12", "14,13", "14,14", "14,15", "14,16", "14,18", "14,2", "14,20", "14,22", "14,24", "14,25", "14,26", "14,27", "14,28", "14,29", "14,30", "14,4", "14,6", "14,8", "14,9", "15,10", "15,12", "15,14", "15,16", "15,18", "15,2", "15,20", "15,22", "15,30", "15,4", "15,6", "15,8", "16,10", "16,12", "16,14", "16,16", "16,18", "16,2", "16,20", "16,22", "16,23", "16,24", "16,26", "16,27", "16,28", "16,3", "16,30", "16,4", "16,6", "16,8", "17,10", "17,12", "17,14", "17,16", "17,18", "17,20", "17,24", "17,26", "17,28", "17,30", "17,6", "17,8", "18,10", "18,12", "18,14", "18,16", "18,18", "18,2", "18,20", "18,21", "18,22", "18,24", "18,26", "18,28", "18,3", "18,30", "18,4", "18,5", "18,6", "18,8", "19,10", "19,12", "19,14", "19,16", "19,18", "19,2", "19,20", "19,22", "19,24", "19,26", "19,28", "19,30", "19,8", "2,10", "2,11", "2,12", "2,13", "2,14", "2,15", "2,16", "2,18", "2,19", "2,2", "2,20", "2,21", "2,22", "2,23", "2,24", "2,25", "2,26", "2,27", "2,28", "2,29", "2,3", "2,30", "2,31", "2,4", "2,5", "2,6", "2,7", "2,8", "2,9", "20,10", "20,12", "20,14", "20,16", "20,18", "20,2", "20,20", "20,22", "20,24", "20,26", "20,28", "20,3", "20,30", "20,4", "20,5", "20,6", "20,7", "20,8", "21,10", "21,12", "21,14", "21,16", "21,18", "21,20", "21,22", "21,24", "21,26", "21,28", "21,30", "22,10", "22,12", "22,14", "22,16", "22,18", "22,2", "22,20", "22,22", "22,24", "22,26", "22,28", "22,29", "22,3", "22,30", "22,4", "22,5", "22,6", "22,7", "22,8", "22,9", "23,12", "23,14", "23,16", "23,18", "23,2", "23,20", "23,22", "23,24", "23,26", "24,10", "24,11", "24,12", "24,14", "24,16", "24,18", "24,2", "24,20", "24,22", "24,24", "24,26", "24,27", "24,28", "24,29", "24,30", "24,4", "24,5", "24,6", "24,7", "24,8", "24,9", "25,14", "25,16", "25,18", "25,2", "25,20", "25,22", "25,24", "26,10", "26,11", "26,12", "26,14", "26,16", "26,18", "26,2", "26,20", "26,22", "26,24", "26,25", "26,26", "26,27", "26,28", "26,29", "26,30", "26,4", "26,5", "26,6", "26,7", "26,8", "26,9", "27,12", "27,14", "27,16", "27,18", "27,2", "27,20", "27,22", "27,30", "27,4", "28,10", "28,11", "28,12", "28,14", "28,16", "28,18", "28,2", "28,20", "28,22", "28,23", "28,24", "28,26", "28,27", "28,28", "28,30", "28,4", "28,6", "28,7", "28,8", "28,9", "29,14", "29,16", "29,18", "29,20", "29,24", "29,26", "29,28", "29,30", "29,4", "29,6", "3,16", "3,18", "3,2", "3,26", "30,1", "30,10", "30,11", "30,12", "30,13", "30,14", "30,16", "30,17", "30,18", "30,2", "30,20", "30,21", "30,22", "30,24", "30,25", "30,26", "30,28", "30,29", "30,3", "30,30", "30,4", "30,6", "30,7", "30,8", "30,9", "4,10", "4,11", "4,12", "4,13", "4,14", "4,16", "4,18", "4,19", "4,2", "4,20", "4,21", "4,22", "4,23", "4,24", "4,26", "4,27", "4,28", "4,29", "4,3", "4,30", "4,4", "4,5", "4,6", "4,7", "4,8", "4,9", "5,14", "5,16", "5,2", "5,24", "5,30", "6,10", "6,11", "6,12", "6,14", "6,16", "6,17", "6,18", "6,19", "6,2", "6,20", "6,21", "6,22", "6,23", "6,24", "6,26", "6,27", "6,28", "6,3", "6,30", "6,4", "6,5", "6,6", "6,7", "6,8", "6,9", "7,12", "7,14", "7,24", "7,26", "7,28", "7,30", "8,10", "8,11", "8,12", "8,14", "8,15", "8,16", "8,17", "8,18", "8,19", "8,2", "8,20", "8,21", "8,22", "8,24", "8,26", "8,28", "8,3", "8,30", "8,4", "8,5", "8,6", "8,7", "8,8", "8,9", "9,2", "9,22", "9,24", "9,26", "9,28", "9,30"], Array(1..451, {(1) = {2, 22}, (2) = {1, 3}, (3) = {2, 4}, (4) = {3, 5}, (5) = {4, 6}, (6) = {5, 7}, (7) = {6, 8}, (8) = {7, 9}, (9) = {8, 23}, (10) = {24, 446}, (11) = {25}, (12) = {26, 447}, (13) = {27, 448}, (14) = {28, 449}, (15) = {29, 450}, (16) = {30, 451}, (17) = {18, 31}, (18) = {17, 19}, (19) = {18, 20}, (20) = {19, 21}, (21) = {20, 22}, (22) = {1, 21}, (23) = {9, 40}, (24) = {10, 41}, (25) = {11, 42}, (26) = {12, 43}, (27) = {13, 44}, (28) = {14, 45}, (29) = {15, 46}, (30) = {16, 48}, (31) = {17, 49}, (32) = {33, 53}, (33) = {32, 34}, (34) = {33, 35}, (35) = {34, 36}, (36) = {35, 37}, (37) = {36, 38}, (38) = {37, 39}, (39) = {38, 40}, (40) = {23, 39, 54}, (41) = {24, 55}, (42) = {25, 56}, (43) = {26, 57}, (44) = {27, 58}, (45) = {28}, (46) = {29, 47}, (47) = {46, 48}, (48) = {30, 47}, (49) = {31, 59}, (50) = {51, 60}, (51) = {50, 52}, (52) = {51, 53}, (53) = {32, 52}, (54) = {40, 67}, (55) = {41, 68}, (56) = {42, 69}, (57) = {43, 70}, (58) = {44, 71}, (59) = {49, 78}, (60) = {50, 79}, (61) = {81, 82}, (62) = {63, 83}, (63) = {62, 64}, (64) = {63, 65, 84}, (65) = {64, 66}, (66) = {65, 85}, (67) = {54, 86}, (68) = {55, 87}, (69) = {56, 88}, (70) = {57, 89}, (71) = {58, 72}, (72) = {71, 73}, (73) = {72, 74}, (74) = {73, 75}, (75) = {74, 76}, (76) = {75, 77}, (77) = {76, 90}, (78) = {59, 91}, (79) = {60, 92}, (80) = {81, 93}, (81) = {61, 80}, (82) = {61, 94}, (83) = {62, 95}, (84) = {64, 96}, (85) = {66, 97}, (86) = {67, 98}, (87) = {68, 99}, (88) = {69, 100}, (89) = {70, 101}, (90) = {77, 108}, (91) = {78, 109}, (92) = {79, 110}, (93) = {80, 111}, (94) = {82, 112}, (95) = {83, 113}, (96) = {84, 114}, (97) = {85, 115}, (98) = {86, 116}, (99) = {87, 107}, (100) = {88, 117}, (101) = {89, 102}, (102) = {101, 103}, (103) = {102, 118}, (104) = {105, 119}, (105) = {104, 106}, (106) = {105, 120}, (107) = {99, 109}, (108) = {90, 121}, (109) = {91, 107}, (110) = {92, 122}, (111) = {93, 123}, (112) = {94, 124}, (113) = {95, 125}, (114) = {96, 126}, (115) = {97, 127}, (116) = {98, 128}, (117) = {100, 130}, (118) = {103, 133}, (119) = {104, 134}, (120) = {106, 135}, (121) = {108, 137}, (122) = {110, 140}, (123) = {111, 141}, (124) = {112, 142}, (125) = {113, 143}, (126) = {114, 144}, (127) = {115, 145}, (128) = {116, 146}, (129) = {136, 147}, (130) = {117, 131, 148}, (131) = {130, 132}, (132) = {131, 149}, (133) = {118, 150}, (134) = {119, 151}, (135) = {120, 152}, (136) = {129, 138}, (137) = {121, 153}, (138) = {136, 139}, (139) = {138, 140}, (140) = {122, 139}, (141) = {123, 154}, (142) = {124, 184}, (143) = {125, 185}, (144) = {126, 186}, (145) = {127, 187}, (146) = {128, 188}, (147) = {129, 189}, (148) = {130, 190}, (149) = {132, 191}, (150) = {133, 192}, (151) = {134, 193}, (152) = {135, 194}, (153) = {137, 196}, (154) = {141, 201}, (155) = {156, 183}, (156) = {155, 157}, (157) = {156, 158}, (158) = {157, 159}, (159) = {158, 160}, (160) = {159, 161}, (161) = {160, 331}, (162) = {163, 332}, (163) = {162, 165}, (164) = {175, 333}, (165) = {163, 166}, (166) = {165, 167}, (167) = {166, 168}, (168) = {167, 169}, (169) = {168, 170}, (170) = {169, 171}, (171) = {170, 172, 334}, (172) = {171, 173}, (173) = {172, 174}, (174) = {173, 176}, (175) = {164, 178}, (176) = {174, 177}, (177) = {176}, (178) = {175, 179}, (179) = {178, 180}, (180) = {179, 181}, (181) = {180, 182}, (182) = {181, 183}, (183) = {155, 182}, (184) = {142, 202}, (185) = {143, 203}, (186) = {144, 204}, (187) = {145, 205}, (188) = {146, 206}, (189) = {147, 195}, (190) = {148, 207}, (191) = {149, 208}, (192) = {150, 209}, (193) = {151, 210}, (194) = {152, 211}, (195) = {189, 197}, (196) = {153, 212}, (197) = {195, 198}, (198) = {197, 199}, (199) = {198, 200}, (200) = {199, 201}, (201) = {154, 200}, (202) = {184, 213}, (203) = {185, 214}, (204) = {186, 215}, (205) = {187, 216}, (206) = {188, 217}, (207) = {190, 219}, (208) = {191, 220}, (209) = {192, 221}, (210) = {193, 222}, (211) = {194, 223}, (212) = {196, 226}, (213) = {202, 232}, (214) = {203, 233}, (215) = {204, 234}, (216) = {205, 235}, (217) = {206, 236}, (218) = {225, 237}, (219) = {207, 238}, (220) = {208, 239}, (221) = {209, 240}, (222) = {210, 241}, (223) = {211, 224}, (224) = {223, 226}, (225) = {218, 227}, (226) = {212, 224}, (227) = {225, 228}, (228) = {227, 229}, (229) = {228, 230}, (230) = {229, 231}, (231) = {230, 232}, (232) = {213, 231}, (233) = {214, 244}, (234) = {215, 245}, (235) = {216, 246}, (236) = {217, 247}, (237) = {218, 248}, (238) = {219, 249}, (239) = {220, 250}, (240) = {221, 251}, (241) = {222, 252}, (242) = {243, 262}, (243) = {242, 244}, (244) = {233, 243}, (245) = {234, 263}, (246) = {235, 264}, (247) = {236, 265}, (248) = {237, 266}, (249) = {238, 267}, (250) = {239, 268}, (251) = {240, 269}, (252) = {241, 253}, (253) = {252, 254}, (254) = {253, 255}, (255) = {254, 256}, (256) = {255}, (257) = {258}, (258) = {257, 259}, (259) = {258, 260}, (260) = {259, 261}, (261) = {260, 262}, (262) = {242, 261}, (263) = {245, 273}, (264) = {246, 274}, (265) = {247, 275}, (266) = {248, 276}, (267) = {249, 277}, (268) = {250, 278}, (269) = {251, 279}, (270) = {271, 291}, (271) = {270, 272}, (272) = {271, 292}, (273) = {263, 293}, (274) = {264, 294}, (275) = {265, 295}, (276) = {266, 296}, (277) = {267, 297}, (278) = {268, 298}, (279) = {269, 280}, (280) = {279, 281}, (281) = {280, 282}, (282) = {281, 283}, (283) = {282, 284}, (284) = {283, 285}, (285) = {284, 299}, (286) = {287, 300}, (287) = {286, 288}, (288) = {287, 289}, (289) = {288, 290}, (290) = {289, 291}, (291) = {270, 290}, (292) = {272, 303}, (293) = {273, 304}, (294) = {274, 305}, (295) = {275, 306}, (296) = {276, 307}, (297) = {277, 308}, (298) = {278, 309}, (299) = {285, 315}, (300) = {286, 316}, (301) = {302, 320}, (302) = {301, 303}, (303) = {292, 302}, (304) = {293, 321}, (305) = {294, 322}, (306) = {295, 323}, (307) = {296}, (308) = {297, 324}, (309) = {298, 310}, (310) = {309, 311}, (311) = {310, 325}, (312) = {313, 326}, (313) = {312, 314}, (314) = {313, 327}, (315) = {299, 328}, (316) = {300, 329}, (317) = {318, 330}, (318) = {317, 319}, (319) = {318, 320}, (320) = {301, 319}, (321) = {304, 340}, (322) = {305, 341}, (323) = {306, 343}, (324) = {308, 345}, (325) = {311, 348}, (326) = {312, 350}, (327) = {314, 351}, (328) = {315, 354}, (329) = {316, 355}, (330) = {317, 356}, (331) = {161, 365}, (332) = {162, 366}, (333) = {164, 368}, (334) = {171, 374}, (335) = {344}, (336) = {337, 359}, (337) = {336, 338}, (338) = {337, 339}, (339) = {338, 340}, (340) = {321, 339}, (341) = {322, 342}, (342) = {341, 343}, (343) = {323, 342}, (344) = {335, 353}, (345) = {324, 346}, (346) = {345, 347}, (347) = {346}, (348) = {325, 349}, (349) = {348, 350}, (350) = {326, 349}, (351) = {327, 352}, (352) = {351, 354}, (353) = {344, 355}, (354) = {328, 352}, (355) = {329, 353}, (356) = {330, 357}, (357) = {356, 358}, (358) = {357, 359}, (359) = {336, 358}, (360) = {361, 385}, (361) = {360, 362}, (362) = {361, 363}, (363) = {362, 364}, (364) = {363, 386}, (365) = {331, 387}, (366) = {332, 367}, (367) = {366, 369}, (368) = {333, 378, 388}, (369) = {367, 370}, (370) = {369, 371}, (371) = {370, 372}, (372) = {371, 373}, (373) = {372, 389}, (374) = {334, 375}, (375) = {374, 376}, (376) = {375, 377}, (377) = {376, 379}, (378) = {368, 380}, (379) = {377, 390}, (380) = {378, 381}, (381) = {380, 382}, (382) = {381, 383}, (383) = {382, 384}, (384) = {383, 385}, (385) = {360, 384}, (386) = {364, 394}, (387) = {365, 395}, (388) = {368, 399}, (389) = {373, 404}, (390) = {379, 409}, (391) = {392, 415}, (392) = {391, 393}, (393) = {392, 416}, (394) = {386, 417}, (395) = {387, 396}, (396) = {395, 397}, (397) = {396, 398}, (398) = {397, 400}, (399) = {388, 408}, (400) = {398, 401}, (401) = {400, 402}, (402) = {401, 403}, (403) = {402, 404}, (404) = {389, 403, 418}, (405) = {406, 419}, (406) = {405, 407}, (407) = {406, 420}, (408) = {399, 410}, (409) = {390, 421}, (410) = {408, 411}, (411) = {410, 412}, (412) = {411, 413}, (413) = {412, 414}, (414) = {413, 415}, (415) = {391, 414}, (416) = {393, 424}, (417) = {394, 425}, (418) = {404, 435}, (419) = {405, 436}, (420) = {407, 437}, (421) = {409, 439}, (422) = {423, 445}, (423) = {422, 424}, (424) = {416, 423}, (425) = {417, 426}, (426) = {425, 427}, (427) = {426, 428}, (428) = {427, 429}, (429) = {428, 430}, (430) = {429, 432}, (431) = {438, 446}, (432) = {430, 433}, (433) = {432, 434}, (434) = {433, 447}, (435) = {418, 448}, (436) = {419, 449}, (437) = {420, 450}, (438) = {431, 440}, (439) = {421, 451}, (440) = {438, 441}, (441) = {440, 442}, (442) = {441, 443}, (443) = {442, 444}, (444) = {443, 445}, (445) = {422, 444}, (446) = {10, 431}, (447) = {12, 434}, (448) = {13, 435}, (449) = {14, 436}, (450) = {15, 437}, (451) = {16, 439}}), `GRAPHLN/table/3`, 0)

(3)

StyleVertex(G, sprintf("%d,%d",start[]), color="LimeGreen");

StyleVertex(G, sprintf("%d,%d",finish[]), color="Red");

for v in Vertices(G) do
    SetVertexAttribute(G, v,"draw-pos-fixed"=GetVertexAttribute(H,v,"draw-pos-fixed"));
end do;

DrawGraph(G, stylesheet=[vertexshape="square", vertexpadding=10, vertexborder=false, vertexcolor="Black"],  showlabels=false, size=[800,800]);

 

sp := ShortestPath(G, sprintf("%d,%d",start[]), sprintf("%d,%d",finish[]) ):

StyleVertex(G, sp[2..-2], color="Orange");
StyleEdge(G, [seq({sp[i],sp[i+1]}, i=1..nops(sp)-1)], color="Orange");

DrawGraph(G, stylesheet=[vertexshape="square", vertexpadding=10, vertexborder=false, vertexcolor="Black"],  showlabels=false, size=[800,800]);

 

 

 

 


Please Wait...