I'm trying to solve a partial differential equation with two boundary conditions below.  The general solution contains arbitrary functions of the non-differentiated variable.  These functions are solved for and assigned but do not appear in the final solution return.  Can anybody help me with this?

> restart;

> l:=lambda;

> Dn:=L[n]^2/tau[n]; Dp:=L[p]^2/tau[p];

> g[p](l,x):=(1-R(l))*alpha[CdS](l)*P(l)*exp(-(alpha[CdS](l)*(x+W[n])));

> eq1:=diff(dp[n](l,x),x$2)-dp[n](l,x)/L[p]^2+g[p](l,x)/Dp=0;

> solve1:=dsolve(eq1,dp[n](l,x));

> assign(solve1);

Boundary Condition

> bc1:=eval(dp[n](l,x),x=-X[n])=0;

> _F1(l):=simplify(solve(bc1,_F1(l)));

Boundary Condition

> bc2:=-Dp*eval(diff(dp[n](l,x),x),x=-W[n])=S[p]*eval(dp[n](l,x),x=-W[n]);

> _F2(l):=simplify(solve(bc2,_F2(l)));

> dp[n](l,x);

Solution contains arbitrary functions F1 and F2 instead of explicit forms solved for above ????

This post generated using the online HTML conversion tool
Download the original worksheet

Please Wait...