Education

Teaching and learning about math, Maple and MapleSim

We are holding another Maple Conference this year, and I am pleased to announce that we have just opened the Call for Participation!

This year’s conference will be held Nov. 2 – Nov. 3, 2022. It will be a free virtual event again this year, and it will be an excellent opportunity to meet other members of the Maple community and share your work.

We are inviting submissions of presentation proposals on a range of topics related to Maple, including Maple in education, algorithms and software, and applications. We also encourage submission of proposals related to Maple Learn. This year, we are not requiring recorded videos, and we hope to see more interaction between presenters and audience members in our live sessions.

You can find more information about the themes of the conference and how to submit a presentation proposal at the Call for Participation page. Proposals are due July 18, 2022.

Presenters will have the option to submit papers and articles to a special Maple Conference issue of the Maple Transactions journal after the conference.

Registration for attending the conference will open in June. We will also be featuring an art gallery again at the conference. Watch for further announcements in the coming weeks.

I sincerely hope that all of you here in the Maple Primes community will consider joining us for this event, whether as a presenter or attendee!

Have you ever wanted to create practice problems and quizzes that use buttons and other features to support a student making their way to an answer, such as the following?

Let’s take a look at how you can use Maple 2022 to create documents like these that can be deployed in Maple Learn. I know I’ve always wanted to learn, so let’s learn together. All examples have a document that you can use to follow along, found here, in Maple Cloud.  

The most important command you’ll want to take a look at is ShareCanvas. This command generates a Maple Learn document. Make sure to remember that command, instead of ShowCanvas, so that the end result gives you a link to a document instead of showing the results in Maple. You’ll also want to make sure you load the DocumentTools:-Canvas subpackage using with(DocumentTools:- Canvas).

If you take a look at our first example, below, the code may seem intimidating. However, let’s break it down, I promise it makes sense!

with(DocumentTools:-Canvas);
cv := NewCanvas([Text("Volume of Revolution", fontsize = 24), "This solid of revolution is created by rotating", f(x) = cos(x) + 1, Text("about the y=0 axis on the interval %1", 0 <= x and x <= 4*Pi), Plot3D("Student:-Calculus1:-VolumeOfRevolution(cos(x) + 1, x = 0 .. 4*Pi, output = plot, caption=``)")]);
ShareCanvas(cv);

The key command is Plot3D. This plots the desired graph and places it into a Maple Learn document. The code around it places text and a math group containing the equation being graphed. 


Let’s take a look at IntPractice now. The next example allows a student to practice evaluating an integral.

with(Grading):
IntPractice(Int(x*sin(x), x, 'output'='link'));

 This command allows you to enter an integral and the variable of integration, and then evaluates each step a student enters on their way to finding a result. The feedback given on every line is incredibly useful. Not only will it tell you if your steps are right, but will let you know if your last line is correct, i.e if the answer is correct.

Finally, let’s talk about SolvePractice.

with(Grading):
SolvePractice(2*x + 3 = 6*x - 9, 'output' = 'link');

This command takes an equation, and evaluates it for the specified variable. Like the IntPractice command, this command will check your steps and provide feedback. The image below shows how this command looks in Maple 2022.

These commands are the stepping stones for creating practice questions in Maple Learn. We can do so much more in Maple 2022 scripting than I realized, so let’s continue to learn together!

Some other examples of scripted documents in the Maple Learn Document Gallery are our steps documents, this document on the Four Color Visualization Theorem, and a color by numbers. As you can see, there’s a lot that can be done with Maple Scripting.

 Let us know in the comments if you’d like to see more on Maple 2022 scripting and Maple Learn.

A user of ours came up with an interesting request: taking a procedure name as an argument and then within the procedure, return a set containing the names of all variables within the procedure. This task can be accomplished in one of two ways, one with local variables, one with global variables.

One method is:

find_vars_in_proc(f :: procedure, $)
  return {op(2, eval(f))};
end proc;

for variables that Maple unambiguously determines to be local variables. For global variables, a slight variation appears as:

find_vars_in_proc(f :: procedure, $)
  return {op(2, eval(f)), op(6, eval(f))};
end proc;

As always, typing ?procedure directly in the worksheet brings up the help guide containing more information on operands of a procedure!

Probability is a field of mathematics that sees extensive use outside of academics.  Whether one’s checking the likelihood of rain on a weather app or the odds of winning the lottery, probability is everywhere.  My favorite application of probability is dice games like Dungeons and Dragons.  The game can be played very simply (choose to attack a monster, roll a 20-sided-die, try to exceed a certain number) or with a complexity that rivals high school math courses.  There are spells and abilities that modify one’s dice rolls, such as adding additional rolls to the total or rerolling the die and using the higher result.  A good player regularly asks themself when to activate certain buffs and how likely they are to succeed with or without them.

All of these questions boil down to the basics of probability.  Things that one learns in an introductory statistics course extend into countless applications.  Currently, I’m adding some of that knowledge to the Maple Learn document gallery, and I’m here to give a sneak peek.

First, I’ve built tree diagrams in Maple Learn.  Tree diagrams are a way to map probability across multiple events occurring in sequence.  Each branching path represents a series of events that have a specified probability of occurring.

Here’s an example: one morning I flip a coin to decide if I buy a lottery ticket.  If it’s heads, I do.  If I buy the ticket, I have a one in a million chance of winning the cash prize.  Drawn as a tree diagram…

I drew this using Maple Learn line, point, and label operations.

My new D&D-themed documents are a bit more exciting.  In the first, we explore a tree diagram with variable probabilities.  A brave hero makes their way into a dungeon, attacking any random monster they see.  How likely are they to land an attack?  Adjust the details of the question and watch the diagram change.


In the second, I used Maple program scripting to add a live randomized dice roller.  Many probability techniques are at play to analyze which of two buffs will do more good for a dice-rolling adventurer.

I plan on making more documents like these; keep your eyes on the Document Gallery probability collection for updates.

Les probabilités sont  un domaine des mathématiques largement utilisé en dehors des universités. Que l'on vérifie la probabilité de l’apparition de la pluie sur une application météo ou les chances de gagner à la loterie, les probabilités sont partout. Mon application des probabilités préférée est les jeux de dés comme Donjons et Dragons. Le jeu peut se jouer très simplement (choisir d'attaquer un monstre, lancer un dé à 20 faces, essayer de dépasser un certain nombre) ou avec une complexité qui rivalise avec les cours de mathématiques du lycée. Il existe des sorts et des capacités qui modifient les lancés de dés, comme ajouter des lancés supplémentaires au total ou relancer le dé et utiliser le résultat le plus élevé. Un bon joueur se demande régulièrement quand activer certains « buffs » et quelle est la probabilité qu'ils réussissent avec ou sans eux.

Toutes ces questions se résument aux bases des probabilités. Les choses que l'on apprend dans un cours d'introduction aux statistiques s'étendent à d'innombrables applications. Actuellement, j'ajoute certaines de ces connaissances à la galerie de documents Maple Learn je voulais vous en donner un aperçu.

Tout d'abord, j'ai construit des arbres de probabilité avec Maple Learn. Ceux-ci permettent de représenter graphiquement la probabilité de plusieurs événements se produisant en séquence. Chaque chemin de branchement représente une série d'événements qui ont une probabilité de se produire spécifique.

Voici un exemple : un matin, je lance une pièce pour décider si j'achète un billet de loterie. Si c'est face, je le fais. Si j'achète le billet, j'ai une chance sur un million de gagner l’argent. Dessiné sous forme d'arbre de probabilité…

J'ai dessiné ceci en utilisant les fonctionnalités ligne, point et étiquette de Maple Learn.

Mes nouveaux documents sur le thème de D&D sont un peu plus intéressants. Dans le premier, nous explorons un arbre de probabilités variables. Un héros courageux se rend dans un donjon, attaquant n'importe quel monstre aléatoire qu'il voit. Quelle est la probabilité qu'ils lancent une attaque ? Ajustez les détails de la question et regardez le diagramme changer.

Dans le second, j'ai utilisé la fonction script de Maple pour ajouter un lanceur de dés aléatoire en direct. De nombreuses techniques de probabilité sont en jeu pour analyser lequel des deux « buffs » fera le plus de bien à un aventurier qui lance les dés.

Je prévois de faire plus de documents comme ceux-ci; gardez un œil sur la catégorie de probabilités dans la galerie de documents Maple Learn pour les mises à jour.

Applications to develop exercises on systems of equations using the technique of determinants, Gauss and Crammer. For science and engineering students. In spanish.

Determinantes_Gauss_Crammer.mw

Lenin Araujo

Ambassador of Maple

Récemment, j’ai assisté à une présentation sur comment utiliser Maple Learn pour créer des documents artistiques et aujourd’hui  je vous écris pour vous donner mes conseils sur ce sujet. Maple Learn a beaucoup de fonctionnalités permettant de créer des documents visuels tout en étant un outil parfait pour faire vos devoirs.

Caractéristique 1 : Les formes

 Le premier document artistique de cette collection, le « Pi Pie » a été créé en utilisant la palette géométrie de Maple Learn. Elle fournit des modèles pour tracer des formes géométriques de façon plus simple. Le plus important dans ce document est l’utilisation de « Polygon() » pour créer le symbole pi. Insérez le nombre de points que vous voulez entre les parenthèses et le graphique connectera les points dans l’ordre entre eux. J’ai dessiné le symbole de pi sur un papier graphique et j’ai copié les points dans Maple Learn. C’est beaucoup d’effort, mais je pense que l’effet créé en vaut la peine.

 

Caractéristique 2 : Les fonctions

Ce personnage se nomme Milo je l’ai créé au lycée. Avec Maple Learn je l’ai reproduit en utilisant avec uniquement des fonctions. Voyons cela plus en détails :

  • La tête et les cheveux sont des fonctions paramétriques. Les personnes  se souvenant de leur cours de maths savent que (x, y) = (cos(t), sin(t)) est la formule d’ un cercle unitaire. Nous pouvons modifier l ‘étendue de t, les coefficients avant sin(t) et cos(t) et additionner ou soustraire les constantes pour créer des cercles partielles ou des ellipses.
  • Les yeux grisés sont fait avec des inégalités. Maple Learn permet de griser des régions d’inégalités automatiquement.
  • Le sourire de Milo est l’équation d’un cercle limité par “| y < -0.5”. L’opérateur barre  « such that » vous permet de limiter le domaine et l’étendue d’une fonction.
  • Le cœur vient d’une formule trouvée en ligne. Les mathématiciens ont découvert beaucoup d’équations incrédules de ce type !

Caractéristique 3 : L’animation

Mon document artistique final permet de voir germer une jolie fleur lorsque l’on utilise le curseur de la barre de défilement.  Après avoir défini une variable dans Maple Learn, la barre de défilement apparait et permet l’ajustement de la valeur de la variable. Par exemple :

  • Associez les coordonnées d’un point avec une variable. Évaluez une fonction à un point correspondant à cette variable et voyez comment lorsque la variable change, le point se déplace.
  • Associez l’étendue  d’une fonction paramétrique à une variable. Quand la variable change la fonction s’étend ou se contracte.
  • Utilisez une variable avec une fonction par morceaux. Quand la variable est dans la gamme lui correspondant vous pouvez la visualiser.

Les mathématiques sont une belle langue et chaque type d’expression peut ajouter un plus à votre toile. Mes techniques ne sont que le début de belles pièces d’arts dans Maple Learn. Montrez-nous vos documents artistiques ou vos techniques dans les commentaires !

 

It’s been a few months since the previous blog post on Maple Learn art, and the possibilities keep on growing.  I recently took part in a presentation on art in Maple Learn, and am here to pass on some tips and tricks to you, dear blog reader.  Maple Learn has a huge capacity for both creativity and ingenuity, and is the perfect program for doing your homework or exploring the world of mathematical art.  Check out the art I made here, and soon even more will be added to the Maple Learn Example Gallery!

 

Feature 1: Shapes

The first drawing in the batch, the “Pi Pie” (happy Pi Day!) was created using Maple Learn’s geometry palette.  The palette provides templates for plotting geometric shapes easily.  Most notably in this art is the use of Polygon() to create the pi symbol.  Insert as many points as you want between the brackets, and the plot will connect each one in order.  I drew pi on graph paper and copied down all the coordinates into Maple Learn.  A lot of work, but the effect was worth it.

 

Feature 2: Functions

This is Milo, a character I made in high school.  In Maple Learn, he is built entirely out of functions.  Let’s take a deep dive into what’s going on:

  • The head and hair are parametric functions.  Folks who’ve taken a math class that includes parametrics know that (x, y) = (cos(t), sin(t)) is the formula for a unit circle.  We can modify the range of t, coefficients in front of sin(t) and cos(t), and add or subtract constants to create partial circles and ellipses.

  • The shaded eyes are done with inequalities; Maple Learn shades inequality areas automatically.

  • Milo’s big smile is the equation of a circle with the added detail “| y < -0.5”.  The bar is the “such that” operator, which allows users to limit the domain and range of the function.

  • The body is a piecewise function: positive slope for x-values on the left side, negative slope for x-values on the right, and nothing in between.

  • The heart shape came from a formula found online.  Mathematicians have discovered some incredible equations!

 

Feature 3: Animation

By final piece sprouts into a beautiful flower as one moves a slider.  After defining a variable in Maple Learn, a slider appears to adjust it.  This can be used for interactive explorations of graphs and animations.  For example:

  • Associate the coordinates of a point with the variable or a function evaluated at the variable.  As the variable changes, the point will move.

  • Associate the range of a parametric function with the variable.  As the variable changes, more or less of the function will appear.

  • Use the variable in the conditions of piecewise functions.  When the variable is in the correct range, the shapes or functions you defined in the piecewise will appear.

 

Mathematics is a beautiful language, and every type of expression can add more to your canvas.  These techniques are just the beginning of beautiful Maple Learn art.  Feel free to share your own art or your favorite tips in the comments! 

In computer science, the Towers of Hanoi (Wiki) are considered a prime example of a problem that can only be solved recursively (or iteratively). The time for calculating a certain position n thus grows exponentially with O(2n). In this article an explicit solution is presented with which one can compute any position n with the same computing time O(1). This explicit solution is used in all animations.

Explicit solution

       The Standard Model of Particle Physics in Maple 2022

 

One of the most important mathematical formulations in human history is that of the Standard Model in particle physics. It describes all the elementary particles (leptons like the electron, quarks, bosons as the Higgs or the photon), which in different arrangements, form all the observable particles in nature. The formulation is not just a tremendous theoretical achievement that rendered Nobel prizes but also a practical one. Basically, all the measurements performed in the particle accelerators at CERN and the Fermilab take this mathematical, abstract formulation as the starting point. However, for computer algebra systems, the complexity of the model is somewhat extreme: is not only the number of terms in the corresponding Lagrangian impressively large but also the mathematical properties of each of these objects that represented a challenge for a long time. With hacks of different kinds, the computer algebra representation of only some aspects of the Standard Model was possible, with restricted computational capabilities.

Hidden among the novelties of Maple 2022, a breakthrough in computer algebra is the introduction of a new, fully computable representation of the Standard Model. This representation includes the accessory commands to calculate related scattering amplitudes  (the essence of the computations behind particle collision experiments) and related Feynman integrals . This is a remarkable achievement in computational physics. And from the educational point of view, it brings one more brick of knowledge from "the dark side" of the moon into "the bright side." Making the Standard Model computations be at the tip of one's fingers completely transforms the possible experience we can have with the underlying knowledge.
 

The illustration below of this new Maple 2022 StandardModel package is advanced in time with regards to the release of Maple 2022 days ago, and introduces a new command, Lagrangian, that increases one level the usability of the package. The so updated StandardModel is distributed as usual, within the Maplesoft Physics Updates for Maple 2022.
 

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Download: StandardModel.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

One way to show all solutions of a polynomial in one variable.
The root is the intersection of curves representing the imaginary part of the equation (red) and the real part (blue). These equations are obtained after representing the variable as the sum of its imaginary and real parts. The circle limits the area where all the roots are located (according to theory).
Example      -15*x^7+x^2+I*x+2=0;
polynomial_roots_graph.mw

Vous venez de découvrir vos résultats du bac blanc et n’avez pas obtenus les résultats espérés à l’épreuve de mathématiques ?

Maple Learn pourrait vous aider à améliorer vos connaissances et vous préparer pour le vrai baccalauréat.

Commencez par revoir les théorèmes et définitions essentielles en explorant les documents de la galerie Maple Learn. Si vous avez des doutes sur certaines définitions; n’hésitez pas à utiliser les outils graphiques de Maple Learn pour approfondir vos connaissances

Consultez ces documents ici et ici.

Ensuite entrainez-vous à faire vos exercices avec Maple Learn

Consultez ce document ici.

Et enfin vérifiez vos résultats avec la Calculatrice Maple pour voir les étapes de résolutions :


N’hésitez pas à partager en commentaire vos astuces pour réviser avec Maple Learn ou la Calculatrice Maple!

I’m looking for users’ favourite tips and tricks in Maple Learn. Specifically, small pieces of advice that most people don’t know about, but that helped you create better Maple Learn documents. For instance,

  • A favorite feature that you think is hard to discover;
  • Common techniques you use when creating documents;
  • Things about Maple Learn you wish you knew when you started.

These tricks could be for newbies or for experienced users.

To start off the discussion, let me share three of my own favorite tricks in Maple Learn.

1. Using Documents from the Document Gallery

Writing a Maple Learn document from scratch can seem overwhelming, especially for beginners. A much easier way to create documents is to start with a template from the Document Gallery.

There are hundreds of Maple Learn documents in the Document Gallery, available here. Instead of writing Maple Learn documents from scratch, I like to search the gallery for documents relating to my topic. I then select a document, and just modify it slightly to get what I want.

2. Toggling from Math Mode to Text Mode

If you want to write text in a group element, it’s best to toggle to text mode (otherwise Maple Learn will treat your text as math).

While this can be done using the toolbar, there is a nifty keyboard shortcut to toggle to text mode: place your cursor at the beginning of the group element, and press the space key.

3. Using Double Arrows in Plots to Show Distance

Here’s one for the advanced users. The Vector Command lets you draw arrows on a Maple Learn plot. Combine two such arrows of the same colour going in opposite directions, and you get a double arrow (see below), which I like to use to represent distances in my Maple Learn documents.

Indeed, here is an example document where I use double arrows to provide a visualization of the product rule in calculus (plot pictured below). Notice how the double arrows (created using the vector command) represent distances in the plot.

Comment your favourite tips and tricks down below!

 

The Bohemian Matrix Calendar 2022 is up!  You may find it at https://rcorless.github.io/ (four versions: letter/A4 paper, Sunday/Monday start to the week).

It prints quite well (with proper equipment).  I wish you all the best for 2022.

 

Since the start of the pandemic, I have been involved in online mathematics tutoring. I tried many different applications to best communicate with my students, and ended up sticking with Maple Learn. Here’s my setup, and why I chose Maple Learn.

My Setup

When I have an online tutoring session, I join a scheduled video call to “see” my students. I then open a blank Maple Learn document, and share my screen. I explain whatever I need to explain, while writing key information on the Maple Learn document. When I don’t want Learn to interpret what I write, I go into text mode; when I do (e.g. when I want to graph a function), I stay in math mode. When the class is over, I send the document’s sharelink to my students by email, so that they can access it. 

Here is an example of a Maple Learn document (pictured below) that I created while teaching trigonometry to a student. Keep in mind that I typed this while on call with the student, so the document is very simple - it only uses the most basic features of Maple Learn.

 

Why I Chose Maple Learn

My main student wants me to teach him trigonometry ahead of it being taught to him at school. For this, I need to be able to write lots of text and math easily, while on video call with him. 

Microsoft Word is not good enough for this: the equation editor is too clumsy. I also tried drawing tools where you can move your mouse to draw on the screen, but they make it too hard to write text. I even tried pointing a camera at my desk and writing the notes by hand, but my handwriting is terrible, and I could never find the right position for the camera. That’s the main reason why I chose Maple Learn: it lets me write both text and math quickly and simply, unlike many other applications.

There are some other benefits to using Maple Learn. I like that I can organize what I write in a visually appealing manner on the canvas, by moving groups around. I like that I can graph functions within Maple Learn, without having to open a graphing calculator in a separate tab. Finally, I find the sharelink feature convenient for sending the notes to my students after class.

Disclaimer: I discovered Maple Learn while working at Maplesoft during a co-op term.

1 2 3 4 5 6 7 Last Page 1 of 50