Maple 2015 Questions and Posts

These are Posts and Questions associated with the product, Maple 2015

Is there any facility to apply Finite Volume Method to Partial idifferential equation on MAPLE?
Any comand?

Any Code?

>>> maple = pywinauto.application.Application().start(r'C:\Program Files\Maple 2015\bin.win\maplew.exe')
C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py:1044: RuntimeWarning: Application is not loaded correctly (WaitForInputIdle failed)
  warnings.warn('Application is not loaded correctly (WaitForInputIdle failed)', RuntimeWarning)
>>> maple.Maple.PrintControlIdentifiers()
__main__:1: DeprecationWarning: Method .PrintControlIdentifiers() is deprecated, use .print_control_identifiers() instead.
Traceback (most recent call last):
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py", line 246, in __resolve_control
    criteria)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\timings.py", line 453, in wait_until_passes
    raise err
pywinauto.timings.TimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\__init__.py", line 50, in wrap
    return method(*args, **kwargs)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py", line 585, in print_control_identifiers
    this_ctrl = self.__resolve_control(self.criteria)[-1]
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py", line 249, in __resolve_control
    raise e.original_exception
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\timings.py", line 431, in wait_until_passes
    func_val = func(*args, **kwargs)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py", line 191, in __get_ctrl
    dialog = self.backend.generic_wrapper_class(findwindows.find_element(**criteria[0]))
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\findwindows.py", line 84, in find_element
    elements = find_elements(**kwargs)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\findwindows.py", line 303, in find_elements
    elements = findbestmatch.find_best_control_matches(best_match, wrapped_elems)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\findbestmatch.py", line 533, in find_best_control_matches
    raise MatchError(items = name_control_map.keys(), tofind = search_text)
pywinauto.findbestmatch.MatchError: Could not find 'Maple' in 'dict_keys([])'
>>> maple.Maple.print_control_identifiers()
Traceback (most recent call last):
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py", line 246, in __resolve_control
    criteria)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\timings.py", line 453, in wait_until_passes
    raise err
pywinauto.timings.TimeoutError

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py", line 585, in print_control_identifiers
    this_ctrl = self.__resolve_control(self.criteria)[-1]
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py", line 249, in __resolve_control
    raise e.original_exception
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\timings.py", line 431, in wait_until_passes
    func_val = func(*args, **kwargs)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\application.py", line 191, in __get_ctrl
    dialog = self.backend.generic_wrapper_class(findwindows.find_element(**criteria[0]))
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\findwindows.py", line 84, in find_element
    elements = find_elements(**kwargs)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\findwindows.py", line 303, in find_elements
    elements = findbestmatch.find_best_control_matches(best_match, wrapped_elems)
  File "C:\Users\mas\AppData\Local\Programs\Python\Python36-32\lib\site-packages\pywinauto\findbestmatch.py", line 533, in find_best_control_matches
    raise MatchError(items = name_control_map.keys(), tofind = search_text)
pywinauto.findbestmatch.MatchError: Could not find 'Maple' in 'dict_keys([])'
>>>

 

Hi Users!

Hope you all are fine here. I want to draw a graphs like this

Here 

y(x)=21.70160211*x^2-35.93499295*x+19.00000000;

and 

y(x-0.8)=21.70160211*(x-.8)^2-35.93499295*x+47.74799436

Please help me how to make this for x when y(x) on x-axis and y(x-0.8) on y-axis. I am waiting your positive response. 

Thanks

 


I have a complicated expression which includes RootOf( a quadratic ) but holds for all x what i'd like to do is turn it into a polynomial in x[1], x[2], x[3] so i can start looking at the monomial coefficients.

k[a1]*((x[1]+x[3])*k[d1]+C[T]*k[m])*(R[b]-x[1]-2*x[2])/((R[b]+R[m]-x[1]-2*x[2]-x[3])*k[a1]+k[m])-k[d1]*x[1]-k[a2]*x[1]*(R[b]-x[1]-2*x[2])+2*k[d2]*x[2] = (-R[b]*k[a2]+2*k[a2]*x[1]+2*k[a2]*x[2])*(k[a1]*kh[m]*((x[1]+x[3])*k[d1]+C[T]*k[m])*(R[b]+R[m]-Rh[m]-x[1]-2*x[2])/(k[m]*((R[b]+R[m]-x[1]-2*x[2]-x[3])*k[a1]*kh[m]/k[m]+kh[m]))-k[d1]*x[1]-kh[a2]*x[1]*(R[b]+R[m]-Rh[m]-x[1]-2*x[2])+2*kh[d2]*x[2])/(2*kh[a2]*RootOf(kh[a2]*_Z^2+(-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])*_Z-2*k[a2]*x[1]*x[2]-k[a2]*x[1]^2+k[a2]*x[1]*R[b]+2*kh[d2]*x[2]-2*k[d2]*x[2])-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])+(-2*kh[a2]*RootOf(kh[a2]*_Z^2+(-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])*_Z-2*k[a2]*x[1]*x[2]-k[a2]*x[1]^2+k[a2]*x[1]*R[b]+2*kh[d2]*x[2]-2*k[d2]*x[2])+2*k[a2]*x[1]+2*k[d2]-2*kh[d2])*(kh[a2]*x[1]*(R[b]+R[m]-Rh[m]-x[1]-2*x[2])-2*kh[d2]*x[2])/(2*kh[a2]*RootOf(kh[a2]*_Z^2+(-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])*_Z-2*k[a2]*x[1]*x[2]-k[a2]*x[1]^2+k[a2]*x[1]*R[b]+2*kh[d2]*x[2]-2*k[d2]*x[2])-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])

If this were something like q(x)=p1(x)/sqrt(p2(x)) where p1 and p2 are polynomials and q is a quotient- this would be as simple as making sqrt(p2(x)) the subject and squaring both sides, and then movinbg everything onto one and multiplying out denominators. However RootOf is something I'm not used to manipulating.

Is there anyway of converting this expression to a polynomial using maple commands?

I am working on problems in identifiability and I am interested in how many Lie derivatives of two kinds are required to get a full result for a simple system, and more interestingly a way of visualising what comes out when too few Lie derivatives are used. 

The method is simple, I use Lie derivatives my own program GTS2 to get relationships that must be conserved for the output for two parameter vectors to give the same output (you can find it along with everything else for this question here.

An example of a list of parameter relationships is: 

[{R = R, Rh = Rh, alpha = alpha, C[T] = C[T], Ch[T] = Ch[T], k[a1] = -(k[a2]*C[T]*R-kh[a1]*Ch[T]*Rh-kh[a2]*Ch[T]*Rh)/(R*C[T]), k[a2] = k[a2], k[d1] = k[d1], k[d2] = k[d2], kh[a1] = kh[a1], kh[a2] = kh[a2], kh[d1] = -(k[d1]*x[2]-k[d1]*xh[1]-k[d1]*xh[2]-k[d2]*x[2]+kh[d2]*xh[2])/xh[1], kh[d2] = kh[d2], x[1] = -x[2]+xh[1]+xh[2], x[2] = x[2], xh[1] = xh[1], xh[2] = xh[2]},{...},{...}]

i.e. they will show that there are multiple relationships that satisfy the Lie derivative conditions (each relationship is in a seperate set within the list) and within each set some parameters can vary freely (like R and Rh in the above) and others are determined by the ones that vary freely (like k[a1] and kh[a2]).
 
I want to count the numbers of parameters that have their relationships determined in three different ways so i can plot these numbers as the numbers of both types of Lie-Derivatives vary. These numbers are:
 

  1. N_i number of identifiabile parameters; parameters that in all solutions are of the form {p=ph or ph=p}
  2. N_l number of locally identifiable parameters; parameters that in all solutions take either the form {p=ph or ph=p} or {p=some function of the parameters with hs at the end of their names or ph=some function of exclusively the parameters without hs at the end of their names}
  3. N_u number of unidentifiable parameters; parameters that are neither identifiable or n locally-identifiable. 

    I think its nice to have a link to a worksheet at the end of a question, so here_it_is_again.

Acknowledgement: most of the code in the above was based on snippets written by @Carl Love in response to my previous questions.

EDIT: I had some teaching to do, so uploaded the question early as i was writing in a computer room- as a result the maple worksheet I originally included was confusing, the worksheet I've included in this edit is much easier to understand.

TLDR: i am looking a way to count the numbers of outputs of various types from a program that is built around maples solve feature, and stuck

I am sure that this is a common enough problem. I want to show what commands I'm using to make an output in a maple worksheet in a latex document that i can include in a report.

So far I've got the export feature to work:

(here is an example mapleworksheet, texfile and a corresponding LatexProducedPDF),

but i can't see how to get it to include the commands that create the output.

Dear users!

Hope everyone should be fine here. I need the following simiplification. I did it step by step is there and maple command to do this.

I am waiting your positive answer.

(diff(theta(eta), eta, eta))*(Rd*T[infinity]^3*(`&theta;w`-1)^3*theta(eta)^3+3*Rd*T[infinity]^3*(`&theta;w`-1)^2*theta(eta)^2+(3*(Rd*T[infinity]^3+(1/3)*epsilon*k[nf]))*(`&theta;w`-1)*theta(eta)+Rd*T[infinity]^3+k[nf]) = (-3*Rd*T[infinity]^3*(`&theta;w`-1)^3*theta(eta)^2-6*Rd*T[infinity]^3*(`&theta;w`-1)^2*theta(eta)+(-3*Rd*T[infinity]^3-epsilon*k[nf])*(`&theta;w`-1))*(diff(theta(eta), eta))^2+(-(rho*c[p])[nf]*nu[f]*f(eta)-(rho*c[p])[nf]*nu[f]*g(eta))*(diff(theta(eta), eta))+a*nu[f]*mu[nf]*(diff(f(eta), eta))^2/((-`&theta;w`+1)*T[infinity])-2*a*nu[f]*mu[nf]*(diff(g(eta), eta))*(diff(f(eta), eta))/((`&theta;w`-1)*T[infinity])+a*nu[f]*mu[nf]*(diff(g(eta), eta))^2/((-`&theta;w`+1)*T[infinity])

 

(diff(theta(eta), eta, eta))*Rd*T[infinity]^3*(theta(eta)*`&theta;w`-theta(eta)+1)^3+(diff(theta(eta), eta, eta))*k[nf]*(epsilon*theta(eta)*`&theta;w`-epsilon*theta(eta)+1)+3*Rd*T[infinity]^3*(`&theta;w`-1)*(theta(eta)*`&theta;w`-theta(eta)+1)^2*(diff(theta(eta), eta))^2+epsilon*k[nf]*(`&theta;w`-1)*(diff(theta(eta), eta))^2

 

diff((theta(eta)*`&theta;w`-theta(eta)+1)^3*(diff(theta(eta), eta))*Rd*T[infinity]^3, eta)+diff((epsilon*theta(eta)*`&theta;w`-epsilon*theta(eta)+1)*(diff(theta(eta), eta))*k[nf], eta);

Dear Users!

Hope you would be fine. In the following maple code, I want to write the derivative of psi in term of psi like it did manually in red portion. For higher M and k it very hard to do it manully. It there any command to fix my problem for any value of k and M.

restart; k := 2; M := 4;

with(linalg); with(LinearAlgebra);

printlevel := 2;

for i while i <= 2^(k-1) do

for j from 0 while j <= M-1 do

psi[M*i+j-M+1] := simplify(2^((1/2)*k)*sqrt(GAMMA(j+1)*(j+alpha)*GAMMA(alpha)^2/(Pi*2^(1-2*alpha)*GAMMA(j+2*alpha)))*(sum((-1)^i1*GAMMA(j-i1+alpha)*(2*(2^k*x-2*i1+1))^(j-2*i1)/(GAMMA(alpha)*factorial(i1)*factorial(j-2*i1)), i1 = 0 .. floor((1/2)*j))));

`&psi;&psi;`[M*i+j-M+1] := simplify(diff(psi[M*i+j-M+1], x))

end do

end do; r := 2^(k-1)*M;

VV := Vector[column](r, proc (i) options operator, arrow; psi[i] end proc);

DV := Vector[column](r, proc (i) options operator, arrow; `&psi;&psi;`[i] end proc);

``&psi;&psi;`[2] := 8*sqrt((alpha+1)*(1/2))*sqrt(2)*sqrt(alpha*GAMMA(alpha)^2*4^alpha/GAMMA(2*alpha))/sqrt(Pi) = 8*sqrt((alpha+1)*(1/2))*psi[1];

`&psi;&psi;`[3] := 16*sqrt((2+alpha)*(alpha+1)/(1+2*alpha))/sqrt(2)*(2*sqrt(2)*sqrt((alpha+1)*GAMMA(alpha)^2*4^alpha/GAMMA(1+2*alpha))*alpha*(4*x+1)/sqrt(Pi)) = 16*sqrt((2+alpha)*(alpha+1)/(1+2*alpha))*psi[2]/sqrt(2)

I am waiting your response. Thanks

Hello Guys, I hope you are all fine. I have been struggling with creating an animation of the points (x,y) in maple. I have tried this example 
L := [[1, 1], [3, 2], [3.4, 6], [5, 3, 7], [3, 7, 9, 1], [2, 6, 8, 4, 5]];
animate(PointPlot, [L[trunc(t)]], t = 1 .. 6, frames = 150)
but in my case it shows two points at different location means it takes x and y seperate value and showed it on 1 and 2 on x axis but i want to animate it as the location of point. Please help me. 
Thank you in anticipation.

I have a relatively complicated ODE that i am plotting. One of the variables in particular (B[2211], purple line in the graph) should under go an exponential-like decay to zero, but instead flies off into negative territory  (see graph below) despite having a very simple equation:

problem variable rate of change= -problem variable*constant +linear combination of variables that  are always posotive.

 

My intuition is that this is because i have somehow used the odeplot tool wrong - possibly due to a problem with stepsizes.

Here is a MWE i've made:

aa_problem_MWE.mw

 

The set and list produced by map (see below) contain duplicates.  How to remove duplicates?
 

p := (1+5^(1/2))*(1/2)

1/2+(1/2)*5^(1/2)

(1)

with(Bits)

[And, FirstNonzeroBit, GetBits, Iff, Implies, Join, Nand, Nor, Not, Or, Settings, Split, String, Xor]

(2)

with(LinearAlgebra)

[`&x`, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column, ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix, CompressedSparseForm, ConditionNumber, ConstantMatrix, ConstantVector, Copy, CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm, FromCompressedSparseForm, FromSplitForm, GaussianElimination, GenerateEquations, GenerateMatrix, Generic, GetResultDataType, GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct, LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse, MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, ProjectionMatrix, QRDecomposition, RandomMatrix, RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm, SingularValues, SmithForm, SplitForm, StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector, VandermondeMatrix, VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]

(3)

with(VectorCalculus)

[`&x`, `*`, `+`, `-`, `.`, `<,>`, `<|>`, About, AddCoordinates, ArcLength, BasisFormat, Binormal, Compatibility, ConvertVector, CrossProduct, Curl, Curvature, D, Del, DirectionalDiff, Divergence, DotProduct, Flux, GetCoordinateParameters, GetCoordinates, GetNames, GetPVDescription, GetRootPoint, GetSpace, Gradient, Hessian, IsPositionVector, IsRootedVector, IsVectorField, Jacobian, Laplacian, LineInt, MapToBasis, Nabla, Norm, Normalize, PathInt, PlotPositionVector, PlotVector, PositionVector, PrincipalNormal, RadiusOfCurvature, RootedVector, ScalarPotential, SetCoordinateParameters, SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, Tangent, TangentLine, TangentPlane, TangentVector, Torsion, Vector, VectorField, VectorPotential, VectorSpace, Wronskian, diff, eval, evalVF, int, limit, series]

(4)

b := proc (x, w) options operator, arrow; (-1)^GetBits(x, w, output = number) end proc

proc (x, w) options operator, arrow; (-1)^Bits:-GetBits(x, w, output = number) end proc

(5)

l := proc (x, t, u, v) options operator, arrow; frac(x)*Vector([b(floor(x), 0)*t, b(floor(x), 1)*u, b(floor(x), 2)*v])+(1-frac(x))*Vector([b(floor(x), 0)*v, b(floor(x), 1)*t, b(floor(x), 2)*u]) end proc

proc (x, t, u, v) options operator, arrow; VectorCalculus:-`+`(VectorCalculus:-`*`(frac(x), VectorCalculus:-Vector([VectorCalculus:-`*`(b(floor(x), 0), t), VectorCalculus:-`*`(b(floor(x), 1), u), VectorCalculus:-`*`(b(floor(x), 2), v)])), VectorCalculus:-`*`(VectorCalculus:-`+`(1, VectorCalculus:-`-`(frac(x))), VectorCalculus:-Vector([VectorCalculus:-`*`(b(floor(x), 0), v), VectorCalculus:-`*`(b(floor(x), 1), t), VectorCalculus:-`*`(b(floor(x), 2), u)]))) end proc

(6)

map(l, {0, 1, 2, 3, 4, 5, 6, 7, 8}, 0, 1, p)

{Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian])}

(7)

map(l, [0, 1, 2, 3, 4, 5, 6, 7, 8], 0, 1, p)

[Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian])]

(8)

q := ListTools:-MakeUnique(%)

q := [Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian])]

(9)

Equal(q[1], q[9])

true

(10)

qq := [op({q[]})]

qq := [Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = -1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = -1/2-(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian]), Vector(3, {(1) = 1/2+(1/2)*5^(1/2), (2) = 0, (3) = 1}, attributes = [coords = cartesian])]

(11)

LinearAlgebra:-Equal(qq[1], qq[5])

true

(12)

NULL


 

Download cp.mw

The attached worksheet performs two functions:

(1) It lets me print 4 × 6 Index Cards for the short entries in each table.

(2) It allows for easy storage and retrieval of syntax (code).

The worksheet has many tables, each separated by a Page Break.

Questions:

(a) Is there a way to sort all the different tables so they will be arranged in alphebetical order?

(b) When I select one table to print and open the Print Dialog, the "Selection" option is grayed out. (see graphic below).  (1) Is there a way to enable the selection option?  (2) Is there a way to determine what page I am on so I can use the "Pages from...to" option?  If I need to number the pages, will the page numbers reset to parallel a new alphabetic sort order.

Many thanks in advance.  See WC29_4_BY_6_NOTE_CARDS_UNSORTED.mw attached. And see image of Print Dialog below.

Les

Hi everibody 

I work with Maple 2015 under OS-X El Capitan.

Using more than one matrix vector product (either M.V  or MatrixVectorMultiply(M,V)  ; M is a n by p matrix and V a column vector of size p) within the same block of commands generates an error.

Do other people have the same problem ?
Thanks for your feedback.

SomethingGoesWrong.mw


PS : I know I can do this   X . <<1, 1, -1> | <-1, 2, 0>> but this doesn't explain the error I get

 

what are the dynamical system which act on invariant manifold?

Is it a complete set ? How to search matrix?

1 2 3 4 5 6 7 Last Page 3 of 66