Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Hi,
Apparently I have a problem but I can't find it. Please advise what is the source of the error?
Please see the attached worksheet.
1.mw

restart;
alias(u = u(x, z, t), f = f(x, z, t));
                              u, f
u := (f+sqrt(R))*exp(I*R*x);
                    /     (1/2)\           
                    \f + R     / exp(I R x)
pde1 := I*(diff(u, z))+diff(u, x, x)+diff(u, t, t)+u*abs(u)*abs(u)-(u*abs(u)*abs(u))*abs(u)*abs(u);
    / d   \              / d  / d   \\           
  I |--- f| exp(I R x) + |--- |--- f|| exp(I R x)
    \ dz  /              \ dx \ dx  //           

           / d   \                /     (1/2)\  2           
     + 2 I |--- f| R exp(I R x) - \f + R     / R  exp(I R x)
           \ dx  /                                          

       / d  / d   \\           
     + |--- |--- f|| exp(I R x)
       \ dt \ dt  //           

                                                            2
       /     (1/2)\                           2 |     (1/2)| 
     + \f + R     / exp(I R x) (exp(-Im(R x)))  |f + R     | 

                                                            4
       /     (1/2)\                           4 |     (1/2)| 
     - \f + R     / exp(I R x) (exp(-Im(R x)))  |f + R     | 

simplify(%);
         / d   \              / d  / d   \\           
       I |--- f| exp(I R x) + |--- |--- f|| exp(I R x)
         \ dz  /              \ dx \ dx  //           

                / d   \                 2             
          + 2 I |--- f| R exp(I R x) - R  exp(I R x) f
                \ dx  /                               

             (5/2)              / d  / d   \\           
          - R      exp(I R x) + |--- |--- f|| exp(I R x)
                                \ dt \ dt  //           

                                               2  
                                   |     (1/2)|   
          + exp(I R x - 2 Im(R x)) |f + R     |  f

                                               2       
                                   |     (1/2)|   (1/2)
          + exp(I R x - 2 Im(R x)) |f + R     |  R     

                                               4  
                                   |     (1/2)|   
          - exp(I R x - 4 Im(R x)) |f + R     |  f

                                               4       
                                   |     (1/2)|   (1/2)
          - exp(I R x - 4 Im(R x)) |f + R     |  R     
collect(%, exp(I*R*x));
  /  (5/2)       / d   \      2       / d   \   / d  / d   \\
  |-R      + 2 I |--- f| R - R  f + I |--- f| + |--- |--- f||
  \              \ dx  /              \ dz  /   \ dx \ dx  //

       / d  / d   \\\           
     + |--- |--- f||| exp(I R x)
       \ dt \ dt  ///           

                                          2  
                              |     (1/2)|   
     + exp(I R x - 2 Im(R x)) |f + R     |  f

                                          2       
                              |     (1/2)|   (1/2)
     + exp(I R x - 2 Im(R x)) |f + R     |  R     

                                          4  
                              |     (1/2)|   
     - exp(I R x - 4 Im(R x)) |f + R     |  f

                                          4       
                              |     (1/2)|   (1/2)
     - exp(I R x - 4 Im(R x)) |f + R     |  R     
 

I see that using units with the maximize() function causes the connection to the kernel to be lost and then Maple (v2018) must be restarted for things to work properly.  This is obviously not desired behavior - is there any known workaround for this issue? (other than forgoing the use of units?).  Attached is a simple worksheet that illustrates this problem.  It has one part without units that works properly and one part with units that causes the error:  Units_Lose_Kernel.mw

Please help with the bifurcation diagram for the system and parameter values below

NULL

with(VectorCalculus)

[`&x`, `*`, `+`, `-`, `.`, `<,>`, `<|>`, About, AddCoordinates, ArcLength, BasisFormat, Binormal, ConvertVector, CrossProduct, Curl, Curvature, D, Del, DirectionalDiff, Divergence, DotProduct, Flux, GetCoordinateParameters, GetCoordinates, GetNames, GetPVDescription, GetRootPoint, GetSpace, Gradient, Hessian, IsPositionVector, IsRootedVector, IsVectorField, Jacobian, Laplacian, LineInt, MapToBasis, Nabla, Norm, Normalize, PathInt, PlotPositionVector, PlotVector, PositionVector, PrincipalNormal, RadiusOfCurvature, RootedVector, ScalarPotential, SetCoordinateParameters, SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, TangentLine, TangentPlane, TangentVector, Torsion, Vector, VectorField, VectorPotential, VectorSpace, Wronskian, diff, eval, evalVF, int, limit, series]

(1)

interface(imaginaryunit = F)

I

(2)

M := Pi*theta-S*c__1-S*lambda+S__v*v__2

Pi*theta-S*c__1-S*lambda+S__v*v__2

(3)

Y := -S__v*c__2*lambda+Pi*b__1+S*v__1-S__v*c__3

-S__v*c__2*lambda+Pi*b__1+S*v__1-S__v*c__3

(4)

P := S__v*alpha+`&rho;__A`*A+c__4*`&rho;__Q`*Q+I*`&rho;__I`-µ*V

Q*c__4*rho__Q+A*rho__A+I*rho__I+S__v*alpha-V*µ

(5)

R := S__v*c__2*lambda-E*c__5+S*lambda

S__v*c__2*lambda-E*c__5+S*lambda

(6)

U := E*a*delta+Q*k*`&rho;__Q`-A*c__6

E*a*delta+Q*k*rho__Q-A*c__6

(7)

L := c__7*E-I*c__8

E*c__7-I*c__8

(8)

X := q__E*E+I*q__I-c__9*Q

E*q__E+I*q__I-Q*c__9

(9)

solve({L = 0, M = 0, P = 0, R = 0, U = 0, X = 0, Y = 0}, {I, A, E, Q, S, S__v, V})

{A = (a*c__8*c__9*delta+c__7*k*q__I*rho__Q+c__8*k*q__E*rho__Q)*lambda*Pi*(b__1*c__1*c__2+b__1*c__2*lambda+c__2*lambda*theta+c__2*theta*v__1+b__1*v__2+c__3*theta)/(c__6*c__9*c__5*c__8*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2)), E = lambda*Pi*(b__1*c__1*c__2+b__1*c__2*lambda+c__2*lambda*theta+c__2*theta*v__1+b__1*v__2+c__3*theta)/(c__5*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2)), I = c__7*lambda*Pi*(b__1*c__1*c__2+b__1*c__2*lambda+c__2*lambda*theta+c__2*theta*v__1+b__1*v__2+c__3*theta)/(c__5*c__8*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2)), Q = (c__7*q__I+c__8*q__E)*lambda*Pi*(b__1*c__1*c__2+b__1*c__2*lambda+c__2*lambda*theta+c__2*theta*v__1+b__1*v__2+c__3*theta)/(c__9*c__5*c__8*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2)), S = Pi*(c__2*lambda*theta+b__1*v__2+c__3*theta)/(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2), S__v = Pi*(b__1*c__1+b__1*lambda+theta*v__1)/(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2), V = Pi*(a*b__1*c__1*c__2*c__8*c__9*delta*lambda*rho__A+a*b__1*c__2*c__8*c__9*delta*lambda^2*rho__A+a*c__2*c__8*c__9*delta*lambda^2*rho__A*theta+a*c__2*c__8*c__9*delta*lambda*rho__A*theta*v__1+b__1*c__1*c__2*c__4*c__6*c__7*lambda*q__I*rho__Q+b__1*c__1*c__2*c__4*c__6*c__8*lambda*q__E*rho__Q+b__1*c__1*c__2*c__7*k*lambda*q__I*rho__A*rho__Q+b__1*c__1*c__2*c__8*k*lambda*q__E*rho__A*rho__Q+b__1*c__2*c__4*c__6*c__7*lambda^2*q__I*rho__Q+b__1*c__2*c__4*c__6*c__8*lambda^2*q__E*rho__Q+b__1*c__2*c__7*k*lambda^2*q__I*rho__A*rho__Q+b__1*c__2*c__8*k*lambda^2*q__E*rho__A*rho__Q+c__2*c__4*c__6*c__7*lambda^2*q__I*rho__Q*theta+c__2*c__4*c__6*c__7*lambda*q__I*rho__Q*theta*v__1+c__2*c__4*c__6*c__8*lambda^2*q__E*rho__Q*theta+c__2*c__4*c__6*c__8*lambda*q__E*rho__Q*theta*v__1+c__2*c__7*k*lambda^2*q__I*rho__A*rho__Q*theta+c__2*c__7*k*lambda*q__I*rho__A*rho__Q*theta*v__1+c__2*c__8*k*lambda^2*q__E*rho__A*rho__Q*theta+c__2*c__8*k*lambda*q__E*rho__A*rho__Q*theta*v__1+a*b__1*c__8*c__9*delta*lambda*rho__A*v__2+a*c__3*c__8*c__9*delta*lambda*rho__A*theta+b__1*c__1*c__2*c__6*c__7*c__9*lambda*rho__I+b__1*c__2*c__6*c__7*c__9*lambda^2*rho__I+b__1*c__4*c__6*c__7*lambda*q__I*rho__Q*v__2+b__1*c__4*c__6*c__8*lambda*q__E*rho__Q*v__2+b__1*c__7*k*lambda*q__I*rho__A*rho__Q*v__2+b__1*c__8*k*lambda*q__E*rho__A*rho__Q*v__2+c__2*c__6*c__7*c__9*lambda^2*rho__I*theta+c__2*c__6*c__7*c__9*lambda*rho__I*theta*v__1+c__3*c__4*c__6*c__7*lambda*q__I*rho__Q*theta+c__3*c__4*c__6*c__8*lambda*q__E*rho__Q*theta+c__3*c__7*k*lambda*q__I*rho__A*rho__Q*theta+c__3*c__8*k*lambda*q__E*rho__A*rho__Q*theta+alpha*b__1*c__1*c__5*c__6*c__8*c__9+alpha*b__1*c__5*c__6*c__8*c__9*lambda+alpha*c__5*c__6*c__8*c__9*theta*v__1+b__1*c__6*c__7*c__9*lambda*rho__I*v__2+c__3*c__6*c__7*c__9*lambda*rho__I*theta)/(c__5*c__6*c__8*c__9*µ*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2))}

(10)

``

lambda := beta*(I+`&eta;__A`*A+`&eta;__Q`*Q)/N

beta*(I+eta__A*A+eta__Q*Q)/N

(11)

``

NULL

k := .15

.15

(12)

delta := .125

.125

(13)

mu := 0.464360344e-4

0.464360344e-4

(14)

pi := .464360344

.464360344

(15)

delta__Q := 0.6847e-3

0.6847e-3

(16)

beta := .1086

.1086

(17)

q__E := 0.18113e-3

0.18113e-3

(18)

rho__Q := 0.815e-1

0.815e-1

(19)

a := .16255

.16255

(20)

v__1 := 0.5e-1

0.5e-1

(21)

v__2 := 0.5e-1

0.5e-1

(22)

alpha := 0.57e-1

0.57e-1

(23)

lambda := 0.765e-2

0.765e-2

(24)

rho__A := 0.915e-1

0.915e-1

(25)

rho__I := 0.515e-1

0.515e-1

(26)

a := .16255

.16255

(27)

q__I := 0.1923e-2

0.1923e-2

(28)

q__A := 0.4013e-7

0.4013e-7

(29)

eta__A := .1213

.1213

(30)

eta__Q := 0.3808e-2

0.3808e-2

(31)

w := .5925

.5925

(32)

Download Bifurcation_Equation.mw

I am using temperature units with thermophysical data and scientific constants but am getting inconsistent behavior when using these.  In some cases (e.g., when calling thermophysical data), it seems that it's best to use a Temperature object.  However I have tried to use scientific constants in calculations and it seems that temperature expressions work best (i.e., when using degrees K rather than deg F or deg C).  Simplifying/combining units don't seem to work when using a Temperature object (or when using expressions with deg F).  It may be something simple I am overlooking but I can't figure out the pattern of behavior yet.  I've attached a file that demonstrates the issue:  Temperature_Object_Use.mw

Thanks for any insight here.

Hi,
I want to find (w/k)^2 from the following Eq. by Maple. How do I do it?
(u0b, mu,deltab,sigma and A are fixed parameters)

Eq.mw

am attaching the worksheet of the problem please help me to solve not able to  compute coupled

error.mw

 

restart; with(plots)

PDEtools[declare]((F, T, G, H)(Y), prime = Y)

` F`(Y)*`will now be displayed as`*F

 

` T`(Y)*`will now be displayed as`*T

 

` G`(Y)*`will now be displayed as`*G

 

` H`(Y)*`will now be displayed as`*H

 

`derivatives with respect to`*Y*`of functions of one variable will now be displayed with '`

(1)

p1 := 0.1e-1; p2 := 0.3e-1; p3 := 0.5e-1; p := p1+p2+p3

rf := 1050; kf := .52; cpf := 3617; sigmaf := .8

sigma1 := 25000; rs1 := 5200; ks1 := 6; cps1 := 670

sigma2 := 0.210e-5; rs2 := 5700; ks2 := 25; cps2 := 523

sigma3 := 6.30*10^7; rs3 := 10500; ks3 := 429; cps3 := 235

sigma4 := 10^(-10); rs4 := 3970; ks4 := 40; cps4 := 765

sigma5 := 1.69*10^7; rs5 := 7140; ks5 := 116; cps5 := 390

sigma6 := 4.10*10^7; rs6 := 19300; ks6 := 318; cps6 := 129

``

M := 1; S1 := .5; A := 1; delta := 0.1e-2; g := .1; Gr := .5; betu := .5; bett := .5; Pr := 21; Ec := .5; bet := 1; S2 := .5; Rd := 1; Q := .1; Ra := .5; S := .1

alp := .1

``

``

B1 := 1+2.5*p+6.2*p^2; B2 := 1+13.5*p+904.4*p^2; B3 := 1+37.1*p+612.6*p^2; B4 := (ks1+2*kf-2*p*(kf-ks1))/(ks1+2*kf+p*(kf-ks1)); B5 := (ks2+3.9*kf-3.9*p*(kf-ks2))/(ks2+3.9*kf+p*(kf-ks2)); B6 := (ks3+4.7*kf-4.7*p*(kf-ks3))/(ks3+4.7*kf+p*(kf-ks3)); B7 := (ks4+2*kf-2*p*(kf-ks4))/(ks4+2*kf+p*(kf-ks4)); B8 := (ks5+3.9*kf-3.9*p*(kf-ks5))/(ks5+3.9*kf+p*(kf-ks5)); B9 := (ks6+4.7*kf-4.7*p*(kf-ks6))/(ks6+4.7*kf+p*(kf-ks6))

a1 := B1*p1+B2*p2+B3*p3

a2 := 1-p1-p2-p3+p1*rs1/rf+p2*rs2/rf+p3*rs3/rf

a3 := 1-p1-p2-p3+p1*rs1*cps1/(rf*cpf)+p2*rs2*cps2/(rf*cpf)+p3*rs3*cps3/(rf*cpf)

a4 := B4*p1+B5*p2+B6*p3

``

a5 := 1+3*((p1*sigma1+p2*sigma2+p3*sigma3)/sigmaf-p1-p2-p3)/(2+(p1*sigma1+p2*sigma2+p3*sigma3)/((p1+p2+p3)*sigmaf)-((p1*sigma1+p2*sigma2+p3*sigma3)/sigmaf-p1-p2-p3))

``

NULL

a6 := B1*p1+B2*p2+B3*p3

a7 := 1-p1-p2-p3+p1*rs4/rf+p2*rs5/rf+p3*rs6/rf

a8 := 1-p1-p2-p3+p1*rs4*cps4/(rf*cpf)+p2*rs5*cps5/(rf*cpf)+p3*rs6*cps6/(rf*cpf)

a9 := B7*p1+B8*p2+B9*p3

``

a10 := 1+3*((p1*sigma4+p2*sigma5+p3*sigma6)/sigmaf-p1-p2-p3)/(2+(p1*sigma4+p2*sigma5+p3*sigma6)/((p1+p2+p3)*sigmaf)-((p1*sigma4+p2*sigma5+p3*sigma6)/sigmaf-p1-p2-p3))

W := sum(b[i]*Y^i, i = 0 .. 3); Theta := sum(c[i]*Y^i, i = 0 .. 3); U := sum(d[i]*Y^i, i = 0 .. 2); Phi := sum(h[i]*Y^i, i = 0 .. 2)

Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0]

 

Y^3*c[3]+Y^2*c[2]+Y*c[1]+c[0]

 

Y^2*d[2]+Y*d[1]+d[0]

 

Y^2*h[2]+Y*h[1]+h[0]

(2)

F := a1*(1+1/bet)*(diff(W, `$`(Y, 2)))+a2*Ra*(diff(W, Y))+A-a5*M*W-S2*W^2+a2*Gr*Theta-S*betu*(W-U) = 0

9.1682928*Y*b[3]+3.0560976*b[2]+2.433571428*Y^2*b[3]+1.622380952*Y*b[2]+.8111904760*b[1]+1-1.346703274*b[3]*Y^3-1.346703274*b[2]*Y^2-1.346703274*b[1]*Y-1.346703274*b[0]-.5*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^2+.8111904760*c[3]*Y^3+.8111904760*c[2]*Y^2+.8111904760*c[1]*Y+.8111904760*c[0]+0.5e-1*d[2]*Y^2+0.5e-1*d[1]*Y+0.5e-1*d[0] = 0

(3)

T := (a4+Rd)*(diff(Theta, `$`(Y, 2)))+a3*Pr*Ra*(diff(Theta, Y))+Q*Theta+Pr*alp*S*bett*(Theta-Phi)+Pr*Ec*((1+1/bet)*a1*(diff(W, Y))^2+a5*M*W^2+(1+1/bet)*a1*S1*W^2+S2*W^3+S*betu*(W-U)) = 0

.205*c[1]*Y+.205*c[2]*Y^2+.205*c[3]*Y^3-.525*d[1]*Y-.525*d[2]*Y^2+.525*b[0]+.525*b[1]*Y+.525*b[2]*Y^2+.525*b[3]*Y^3+21.63764058*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^2-.105*h[0]+6.799682664*Y*c[3]+30.71903373*Y^2*c[3]+20.47935582*Y*c[2]-.105*Y^2*h[2]-.105*Y*h[1]-.525*d[0]+.205*c[0]+10.23967791*c[1]+2.266560888*c[2]+16.04451240*(3*Y^2*b[3]+2*Y*b[2]+b[1])^2+5.25*(Y^3*b[3]+Y^2*b[2]+Y*b[1]+b[0])^3 = 0

(4)

G := Ra*(diff(U, Y))+betu*(W-U) = 0

1.0*Y*d[2]+.5*d[1]+.5*b[3]*Y^3+.5*b[2]*Y^2-.5*d[2]*Y^2+.5*b[1]*Y-.5*d[1]*Y+.5*b[0]-.5*d[0] = 0

(5)

H := Ra*(diff(Phi, Y))+bett*(Theta-Phi) = 0

1.0*Y*h[2]+.5*h[1]+.5*c[3]*Y^3+.5*c[2]*Y^2-.5*Y^2*h[2]+.5*c[1]*Y-.5*Y*h[1]+.5*c[0]-.5*h[0] = 0

(6)

BCS := (D(W))(0) = 0, (D(Theta))(0) = 0, W(1) = -delta*(1+1/bet)*(D(W))(1), Theta(1) = 1+g*(D(Theta))(1), U(1) = -delta*(1+1/bet)*(D(W))(1), Phi(1) = 1+g*(D(Theta))(1)

W := unapply(W(Y), Y)

F := unapply(F(Y), Y)

Theta := unapply(Theta(Y), Y)

T := unapply(T(Y), Y)

U := unapply(U(Y), Y)

G := unapply(G(Y), Y)

Phi := unapply(Phi(Y), Y)

H := unapply(H(Y), Y)

z1 := (D(W))(0) = 0

(D(W))(0) = 0

(7)

z2 := (D(Theta))(0) = 0

(D(Theta))(0) = 0

(8)

z3 := W(1) = -delta*(1+1/bet)*(D(W))(1)

b[3](1)+b[2](1)+b[1](1)+b[0](1) = -0.2e-2*(D(W))(1)

(9)

z4 := Theta(1) = 1+g*(D(Theta))(1)

c[3](1)+c[2](1)+c[1](1)+c[0](1) = 1+.1*(D(Theta))(1)

(10)

z5 := U(1) = -delta*(1+1/bet)*(D(W))(1)

d[2](1)+d[1](1)+d[0](1) = -0.2e-2*(D(W))(1)

(11)

z6 := Phi(1) = 1+g*(D(Theta))(1)

h[2](1)+h[1](1)+h[0](1) = 1+.1*(D(Theta))(1)

(12)

z7 := F(0)

1.+3.0560976*b[2](0)+.8111904760*b[1](0)-1.346703274*b[0](0)-.5*b[0](0)^2+.8111904760*c[0](0)+0.5e-1*d[0](0) = 0

(13)

z8 := T(0)

.525*b[0](0)+21.63764058*b[0](0)^2-.105*h[0](0)-.525*d[0](0)+.205*c[0](0)+10.23967791*c[1](0)+2.266560888*c[2](0)+16.04451240*b[1](0)^2+5.25*b[0](0)^3 = 0

(14)

z9 := G(0)

.5*d[1](0)+.5*b[0](0)-.5*d[0](0) = 0

(15)

z10 := H(0)

.5*h[1](0)+.5*c[0](0)-.5*h[0](0) = 0

(16)

z11 := F(1)

10.25516095*b[3](1)+3.331775278*b[2](1)-.5355127980*b[1](1)+1-1.346703274*b[0](1)-.5*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^2+.8111904760*c[3](1)+.8111904760*c[2](1)+.8111904760*c[1](1)+.8111904760*c[0](1)+0.5e-1*d[2](1)+0.5e-1*d[1](1)+0.5e-1*d[0](1) = 0

(17)

z12 := T(1)

10.44467791*c[1](1)+22.95091671*c[2](1)+37.72371639*c[3](1)-.525*d[1](1)-.525*d[2](1)+.525*b[0](1)+.525*b[1](1)+.525*b[2](1)+.525*b[3](1)+21.63764058*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^2-.105*h[0](1)-.105*h[2](1)-.105*h[1](1)-.525*d[0](1)+.205*c[0](1)+16.04451240*(3*b[3](1)+2*b[2](1)+b[1](1))^2+5.25*(b[3](1)+b[2](1)+b[1](1)+b[0](1))^3 = 0

(18)

z13 := G(1)

.5*d[2](1)+.5*b[3](1)+.5*b[2](1)+.5*b[1](1)+.5*b[0](1)-.5*d[0](1) = 0

(19)

z14 := H(1)

.5*h[2](1)+.5*c[3](1)+.5*c[2](1)+.5*c[1](1)+.5*c[0](1)-.5*h[0](1) = 0

(20)

NULL

Z := fsolve([z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12, z13, z14], {b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3], d[0], d[1], d[2], h[0], h[1], h[2]})

(21)

"F(Y):=eval(sum(b[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"T(Y):=eval(sum(c[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"G(Y):=eval(sum(d[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

"H(Y):=eval(sum(h[i]*Y^i,i=0..5),Z);    "

Error, invalid input: eval received NULL, which is not valid for its 2nd argument, eqns

 

NULL

plot(F(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, W])

Error, (in plot) unexpected options: [9.1682928*Y(Y)*b[3](Y)+3.0560976*b[2](Y)+2.433571428*Y(Y)^2*b[3](Y)+1.622380952*Y(Y)*b[2](Y)+.8111904760*b[1](Y)+1-1.346703274*b[3](Y)*Y(Y)^3-1.346703274*b[2](Y)*Y(Y)^2-1.346703274*b[1](Y)*Y(Y)-1.346703274*b[0](Y)-.5*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^2+.8111904760*c[3](Y)*Y(Y)^3+.8111904760*c[2](Y)*Y(Y)^2+.8111904760*c[1](Y)*Y(Y)+.8111904760*c[0](Y)+0.5e-1*d[2](Y)*Y(Y)^2+0.5e-1*d[1](Y)*Y(Y)+0.5e-1*d[0](Y) = 0, Y = 0 .. 1]

 

plot(T(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, Theta])

Error, (in plot) unexpected options: [.205*c[1](Y)*Y(Y)+.205*c[2](Y)*Y(Y)^2+.205*c[3](Y)*Y(Y)^3-.525*d[1](Y)*Y(Y)-.525*d[2](Y)*Y(Y)^2+.525*b[0](Y)+.525*b[1](Y)*Y(Y)+.525*b[2](Y)*Y(Y)^2+.525*b[3](Y)*Y(Y)^3+21.63764058*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^2-.105*h[0](Y)+6.799682664*Y(Y)*c[3](Y)+30.71903373*Y(Y)^2*c[3](Y)+20.47935582*Y(Y)*c[2](Y)-.105*Y(Y)^2*h[2](Y)-.105*Y(Y)*h[1](Y)-.525*d[0](Y)+.205*c[0](Y)+10.23967791*c[1](Y)+2.266560888*c[2](Y)+16.04451240*(3*Y(Y)^2*b[3](Y)+2*Y(Y)*b[2](Y)+b[1](Y))^2+5.25*(b[3](Y)*Y(Y)^3+b[2](Y)*Y(Y)^2+b[1](Y)*Y(Y)+b[0](Y))^3 = 0, Y = 0 .. 1]

 

plot(G(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, W])

Error, (in plot) unexpected options: [1.0*Y(Y)*d[2](Y)+.5*d[1](Y)+.5*b[3](Y)*Y(Y)^3+.5*b[2](Y)*Y(Y)^2-.5*d[2](Y)*Y(Y)^2+.5*b[1](Y)*Y(Y)-.5*d[1](Y)*Y(Y)+.5*b[0](Y)-.5*d[0](Y) = 0, Y = 0 .. 1]

 

plot(H(Y), Y = 0 .. 1, axes = boxed, color = green, thickness = 2, labels = [Y, Theta])

Error, (in plot) unexpected options: [1.0*Y(Y)*h[2](Y)+.5*h[1](Y)+.5*c[3](Y)*Y(Y)^3+.5*c[2](Y)*Y(Y)^2-.5*Y(Y)^2*h[2](Y)+.5*c[1](Y)*Y(Y)-.5*Y(Y)*h[1](Y)+.5*c[0](Y)-.5*h[0](Y) = 0, Y = 0 .. 1]

 

NULL


 

Download AGM.mw
 

 

eq1:=( d)/(dt)u+(d^(2))/(dy^(2))u + s*( d)/(dy)u + delta * theta = 0;

eq2:=( d)/(dt)theta + (d^(2))/(dy^(2))theta + s*Pr*( d)/(dy)theta +lambda* exp(theta/(1 +(epsilon*theta))) = 0; 

initial and boundary conditons   

t <=0; u = theta = 0, for 0 <= y  <= 1   

t> 0;  u =0, theta = 0   at  y = 0;  

t> 0;  u =1, theta = 0   at   y = 1  ;

where, s, epsilon, Pr, lambda, delta are arbitrary parameters

Hello 

How to remove this error 

3d_plots.mw

Hello,

Can we impliment Artificial Neural Network for nonlinear coupled ODE equation with boundary conditions.? In maple

I wont seen any post regarding ANN in mapleprime.

  restart;

  local gamma:
  local GAMMA:

  odeSystem:= [ (1 + GAMMA)*diff(f(eta), eta$4) - S*(eta*diff(f(eta), eta$3) + 3*diff(f(eta), eta$2)
                +
                diff(f(eta), eta)*diff(f(eta), eta$2) - f(eta)*diff(f(eta), eta$3))
                -
                GAMMA*delta(2*diff(f(eta), eta$2)*diff(f(eta), eta$3)^2 + diff(f(eta), eta$2)^2*diff(f(eta), eta$4))
                -
                M^2*diff(f(eta), eta$2) = 0,

                (1 + (4*R)/3)*diff(theta(eta), eta$2) + Pr*S*(f(eta)*diff(theta(eta), eta)
                -
                eta*diff(theta(eta), eta) + Q*theta(eta)) = 0,

                diff(phi(eta), eta$2) + Sc*S*(f(eta)*diff(phi(eta), eta)
                -
                eta*diff(phi(eta), eta)) - Sc*gamma*phi(eta) = 0
              ];

  params:= [ S = 0.5, GAMMA = 0.1, delta = 0.1, gamma = 0.1, M = 1,
             Pr = 1, Ec = 0.2, Sc = 0.6, R = 1, Q = 1
           ];
  bcs :=[ f(0) = 0, (D@@2)(f)(0) = 0, f(1) = 1, D(f)(1) = 0, D(theta)(0) = 0,
          theta(1) = 1, phi(1) = 1, D(phi)(0) = 0
        ];

how to solve the equations by finite element method

Maple code for solving system of ODE using forward-backward sweep method.

When we specify a set (a sequence of objects enclosed in curly braces), Maple removes duplicates, since the elements of the set must be unique, that is, they cannot be repeated. See below for 2 examples. With the first example  {a<=b  and  b>=a}, everything is in order, since they are one and the same. But Maple treats the same equality, written in two ways  {a=b, b=a} , as different objects. It seems to me that this is not very convenient:

restart;
{a<=b, b>=a}; # OK
{a=b, b=a}; # not OK
is((a=b)=(b=a)); # not OK

                                                  

 

3 4 5 6 7 8 9 Last Page 5 of 62