Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

restart;
kp := .3;

Pr := .3; N := .5; g := .5; A := 1; B := 0; M := .5; lambda := .5; Ec := .5;

rf := 997.1; kf := .613; cpf := 4179; `σf` := 0.5e-1;
p1 := 0.1e-1; sigma1 := 2380000; rs1 := 4250; ks1 := 8.9538; cps1 := 686.2;
p2 := 0.5e-1; sigma2 := 3500000; rs2 := 10500; ks2 := 429; cps2 := 235;

NULL;
a1 := (1-p1)^2.5*(1-p2)^2.5;
a2 := (1-p2)*(1-p1+p1*rs1/rf)+p2*rs2/rf;
a3 := 1+3*((p1*sigma1+p2*sigma2)/`σf`-p1-p2)/(2+(p1*sigma1+p2*sigma2)/((p1+p2)*`σf`)-((p1*sigma1+p2*sigma2)/`σf`-p1-p2));

a4 := (1-p2)*(1-p1+p1*rs1*cps1/(rf*cpf))+p2*rs2*cps2/(rf*cpf);
a5 := (ks1+2*kf-2*p1*(kf-ks1))*(ks2+2*kf*(ks1+2*kf-2*p1*(kf-ks1))/(ks1+2*kf+p1*(kf-ks1))-2*p2*(kf*(ks1+2*kf-2*p1*(kf-ks1))/(ks1+2*kf+p1*(kf-ks1))-ks2))/((ks1+2*kf+p1*(kf-ks1))*(ks2+2*kf*(ks1+2*kf-2*p1*(kf-ks1))/(ks1+2*kf+p1*(kf-ks1))+2*p2*(kf*(ks1+2*kf-2*p1*(kf-ks1))/(ks1+2*kf+p1*(kf-ks1))-ks2)));


OdeSys := (diff(U(Y), Y, Y))/(a1*a2)+Theta(Y)+N*(Theta(Y)*Theta(Y))-a3*(M*M)*U(Y)/a2-(kp*kp)*U(Y)/(a1*a2), a5*(diff(Theta(Y), Y, Y))/a4+Pr*Ec*((diff(U(Y), Y))^2+U(Y)^2*(kp*kp))/(a1*a2); Cond := U(0) = lambda*(D(U))(0), Theta(0) = A+g*(D(Theta))(0), U(1) = 0, Theta(1) = B; Ans := dsolve([OdeSys, Cond], numeric, output = listprocedure);
U := proc (Y) options operator, arrow, function_assign; (eval(U(Y), Ans))(0) end proc;
                 U := Y -> (eval(U(Y), Ans))(0)
Theta := proc (Y) options operator, arrow, function_assign; (eval(Theta(Y), Ans))(0) end proc;
             Theta := Y -> (eval(Theta(Y), Ans))(0)
Theta_b := (int(U(Y)*Theta(Y), Y = 0 .. 1))/(int(U(Y), Y = 0 .. 1));
Error, (in Theta) too many levels of recursion
Q := int(U(Y), Y = 0 .. 1, numeric);
Error, (in Theta) too many levels of recursion
NUMERIC := [(eval((diff(U(Y), Y))/a1, Ans))(0), (eval(-(diff(Theta(Y), Y))/(Theta_b*a5), Ans))(0)];
Error, (in Theta) too many levels of recursion

 

i need the solution  for Y=0 and Y=1

Streamlines, isotherms and microrotations for Re = 1, Pr = 7.2, Gr = 105 and (a) Ha = 0 (b) Ha = 30 (c) Ha = 60 (d) Ha = 100.

 

Fig. 2

for Ra = 105Ha = 50, Pr = 0.025 and θ = 1 − Y

 

 

eqat := {M . (D(theta))(0)+2.*Pr . f(0) = 0, diff(phi(eta), eta, eta)+2.*Sc . f(eta) . (diff(phi(eta), eta))-(1/2)*S . Sc . eta . (diff(phi(eta), eta))+N[t]/N[b] . (diff(theta(eta), eta, eta)) = 0, diff(g(eta), eta, eta)-2.*(diff(f(eta), eta)) . g(eta)+2.*f(eta) . (diff(g(eta), eta))-S . (g(eta)+(1/2)*eta . (diff(g(eta), eta)))-1/(sigma . Re[r]) . ((1+d^%H . exp(-eta))/(1+d . exp(-eta))) . g(eta)-beta^%H . ((1+d^%H . exp(-eta))^2/sqrt(1+d . exp(-eta))) . g(eta) . sqrt((diff(f(eta), eta))^2+g(eta)^2) = 0, diff(theta(eta), eta, eta)+2.*Pr . f(eta) . (diff(theta(eta), eta))-(1/2)*S . Pr . eta . (diff(theta(eta), eta))+N[b] . Pr . ((diff(theta(eta), eta)) . (diff(phi(eta), eta)))+N[t] . Pr . ((diff(theta(eta), eta))^2)+4/3 . N . (diff((C[T]+theta(eta))^3 . (diff(theta(eta), eta)), eta)) = 0, diff(f(eta), eta, eta, eta)-(diff(f(eta), eta))^2+2.*f(eta) . (diff(f(eta), eta))+g(eta)^2-S . (diff(f(eta), eta)+(1/2)*eta . (diff(f(eta), eta, eta)))-1/(sigma . Re[r]) . ((1+d^%H . exp(-eta))/(1+d . exp(-eta))) . (diff(f(eta), eta))-beta^%H . ((1+d^%H . exp(-eta))^2/sqrt(1+d . exp(-eta))) . (diff(f(eta), eta)) . sqrt((diff(f(eta), eta))^2+g(eta)^2) = 0, g(0) = 1, g(6) = 0, phi(0) = 1, phi(6) = 0, theta(0) = 1, theta(6) = 0, (D(f))(0) = 1, (D(f))(6) = 0};
sys1 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys2 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys3 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys4 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys5 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys6 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys7 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys8 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys9 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys10 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys11 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys12 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys13 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys14 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys15 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys16 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
 

restart;

OdeSys := diff(U(Y), Y, Y)+Theta(Y)+N*(Theta(Y)*Theta(Y))-(M*M)*U(Y) = 0, diff(Theta(Y), Y, Y)+E*(diff(U(Y), Y))^2 = 0;

Cond := U(0) = lambda*(D(U))(0), Theta(0) = A+g*(D(Theta))(0), U(1) = 0, Theta(1) = B; sys := [OdeSys, Cond];
Ans := dsolve(sys);

I find it difficult to use dsolve to solve system of ordinary differential equations with assigned parameters and initial conditions. The error message "Error, (in dsolve/numeric) 'parameters' must be specified as a list of unique unassigned names" kept coming up.

Pls see the uploaded equation for more understanding

restart

interface(imaginaryunit = F)

I

(1)

I

I

(2)

sqrt(-4)

2*I

(3)

NULL

Suscep := diff(S(t), t) = theta*epsilon+v__2*S__v(t)-S(t)*lambda-S(t)*(µ+v__1)

diff(S(t), t) = theta*varepsilon+v__2*S__v(t)-S(t)*lambda-S(t)*(µ+v__1)

(4)

Vacc := diff(S__v(t), t) = (1-theta)*epsilon+v__1*S(t)-(µ+alpha+v__2)*S__v(t)-(1-w)*S__v(t)*lambda

Immun := diff(V(t), t) = alpha*S__v(t)+`ρ__A`*A(t)+(1-k)*`ρ__Q`*Q(t)+`ρ__I`*(I)(t)-µ*V(t)

Exp := diff(E(t), t) = S(t)*lambda+(1-w)*S__v(t)*lambda-(q__E+delta+µ)*E(t)

Asymp := diff(A(t), t) = delta*a*E(t)-(`ρ__A`+µ)*A(t)+k*`ρ__Q`*Q(t)

Inf := diff((I)(t), t) = delta*(1-a)*E(t)-(`ρ__I`+q__I+`δ__I`+µ)*(I)(t)

Quar := diff((I)(t), t) = q__E*E(t)+q__I*(I)(t)-(`ρ__Q`+`δ__Q`+µ)*Q(t)

init_conds := S(0) = S_0, S__v(0) = S__v*_0, V(0) = V_0, E(0) = E_0, A(0) = A_0, (I)(0) = I_0, Q(0) = Q_0

S(0) = S_0, S__v(0) = S__v*_0, V(0) = V_0, E(0) = E_0, A(0) = A_0, I(0) = I_0, Q(0) = Q_0

(5)

sys := {Asymp, Exp, Immun, Inf, Quar, Suscep, Vacc, init_conds}

``

sol := dsolve(sys, numeric, parameters = [`δ__Q`, `δ__I`, a, k, epsilon, v[1], q[E], q[I], q[A], eta[A], eta[Q], rho[A], rho[Q], rho[I], v[2], alpha, mu, delta, alpha, beta, w, lambda, S_0, S__v*_0, V_0, E_0, A_0, I_0, Q_0], method = rkf45)

Error, (in dsolve/numeric) 'parameters' must be specified as a list of unique unassigned names

 

sol(parameters = [delta = .125, `δ__Q` = 0.6847e-3, epsilon = .464360344, `δ__I` = 0.2230e-8, a = .6255, q[E] = 0.18113e-3, k = .15, v__1 = 0.5e-1, v__2 = 0.6e-1, `ρ__Q` = 0.815e-1, `ρ__A` = .1, `ρ__I` = 0.666666e-1, q__I = 0.1923e-2, q__A = 0.4013e-7, `η__A` = .1213, `η__Q` = 0.3808e-2*alpha and 0.3808e-2*alpha = .4, w = .5925, mu = 0.464360344e-4, lambda = 0.1598643e-7, S_0 = 1.0, S__v*_0 = 0.6e-4, V_0 = 0.35e-4, E_0 = 0.5e-4, I_0 = 0.32e-4, A_0 = 0.15e-4, Q_0 = 0.1e-4])

sol(parameters = [delta = .125, delta__Q = 0.6847e-3, varepsilon = .464360344, delta__I = 0.2230e-8, a = .6255, q[E] = 0.18113e-3, k = .15, v__1 = 0.5e-1, v__2 = 0.6e-1, rho__Q = 0.815e-1, rho__A = .1, rho__I = 0.666666e-1, q__I = 0.1923e-2, q__A = 0.4013e-7, eta__A = .1213, false, w = .5925, mu = 0.464360344e-4, lambda = 0.1598643e-7, S_0 = 1.0, S__v*_0 = 0.6e-4, V_0 = 0.35e-4, E_0 = 0.5e-4, I_0 = 0.32e-4, A_0 = 0.15e-4, Q_0 = 0.1e-4])

(6)

Evaluate*the*system*at*t = 2

sol(2)

sol(2)

(7)

sol(1)

sol(1)

(8)

sol(.1)

sol(.1)

(9)

sol(.3)

sol(.3)

(10)

sol(.5)

sol(.5)

(11)

sol(.7)

sol(.7)

(12)

sol(.9)

sol(.9)

(13)

sol(1.1)

sol(1.1)

(14)

sol(1.3)

sol(1.3)

(15)

sol(1.5)

sol(1.5)

(16)

 

 

Download Covid19_Simulation.mw

odeSys := {diff(Theta(x), x, x)+Pr*(R*(diff(Theta(x), x))*f(x)+Nb*(diff(Theta(x), x))*(diff(Phi(x), x))+Nt*(diff(Theta(x), x))^2), N2*(diff(G(x), x, x))-N1*(2*G(x)+diff(f(x), x, x))-N3*R*((diff(f(x), x))*G(x)-f(x)*(diff(G(x), x))), diff(Phi(x), x, x)+R*Sc*f(x)*(diff(Phi(x), x))+Nt*(diff(Theta(x), x, x))/Nb, (1+N1)*(diff(g(x), x, x))+R*((diff(g(x), x))*f(x)-g(x)*(diff(f(x), x)))-M*g(x)+2*Kr*(diff(f(x), x)), (1+N1)*(diff(f(x), x, x, x, x))-R*((diff(f(x), x))*(diff(f(x), x, x))-f(x)*(diff(f(x), x, x, x)))+N1*(diff(G(x), x, x))-M*(diff(f(x), x, x))-2*Kr*(diff(g(x), x))}; cond := f(0) = 0, (D(f))(0) = 1, g(0) = 0, Theta(0) = 1, G(0) = -n*((D@@2)(f))(0), Phi(0) = 1, f(1) = lambda, (D(f))(1) = 0, g(1) = 0, Theta(1) = 0, G(1) = n*((D@@2)(f))(1), Phi(1) = 0; ans := {};

n := .5; N1 := 0.; N2 := 1.0; N3 := .1; lambda := .1; M := .1; Kr := .1; Sc := 1.0; Nb := .1; Pr := 1.0; Nt := .1; R := .5;

ans := dsolve*{cond, eval*odeSys};

hello these are the pde and Boundary conditions  i want to calculate the value of f''(0) ,Theta(0) and  Phi(0)

what is the proper cammand to get the table values for the given equation
NBVs := [eval(ans(N1*G(x)+(1+N1)*(diff(f(x), x, x))), x = 0), eval(ans(-(diff(Theta(x), x))), x = 0), eval(ans(-(diff(Phi(x), x))), x = 0)];

Hi,

I want to solve system of PDE equations by maple and i dont know how can i write it codes that can solve them for me. Can you create the code for the equation

Thank you

Good day,
 

1. Please I need your greatest help. Can anyone please help me to run the examples on the attached papers on Maple software?

 2. Also help me to plot the graphs along with the exact solution

 3. If possible with tables

 I tried but did not get the results as expected. I shall be very grateful if I can get assistance from you

 

Thanks
 

restart:

Digits:= trunc(evalhf(Digits)); #generally a very efficient setting

15

(1)

Setup of BVP system:

#ordinary differential equations:
ODEs:= [
   #Eq 1:
   A1*(diff(f(x), x, x, x))/(A2*phi)-(diff(f(x), x))^2-M^2*(f(x))+f(x)*(diff(f(x), x, x)),

   #Eq 2:
   A4*Pr*phi*(diff(Theta(x), x, x))/A3+f(x)*(diff(Theta(x), x))+Q*Theta(x)
   
   #All these ODEs are implicitly equated to 0.
]:

<ODEs[]>; #Display the ODEs.

Vector(2, {(1) = A1*(diff(diff(diff(f(x), x), x), x))/(A2*phi)-(diff(f(x), x))^2-M^2*f(x)+f(x)*(diff(diff(f(x), x), x)), (2) = A4*Pr*phi*(diff(diff(Theta(x), x), x))/A3+f(x)*(diff(Theta(x), x))+Q*Theta(x)})

(2)

Params := Record(fw = .2, M = .5, Q = .5, Pr = 6.2, phi = 0.5e-1, rf = 997.1, kf = .613, cpf = 4179, btf = 0.3e-4, p1 = 0.1e-1, p2 = 0.5e-1, p3 = 0.5e-1, rs1 = 5100, ks1 = 3007.4, cps1 = 410, bs1 = 0.2e-3, rs2 = 2200, ks2 = 5000, cps2 = 790, bs2 = 0.5e-3, rs3 = 3970, ks3 = 40, cps3 = 765, bs3 = 0.4e-3, A1 = B1*p1+B2*p2+B3*p3, B1 = 1+2.5*phi+6.2*phi^2, B2 = 1+13.5*phi+904.4*phi^2, B3 = 1+37.1*phi+612.6*phi^2, B4 = (ks1+2*kf-2*phi*(kf-ks1))/(ks1+2*kf+phi*(kf-ks1)), B5 = (ks2+3.9*kf-3.9*phi*(kf-ks2))/(ks2+3.9*kf+phi*(kf-ks2)), B6 = (ks3+4.7*kf-4.7*phi*(kf-ks3))/(ks3+4.7*kf+phi*(kf-ks3)), A2 = 1-p1-p2-p3+p1*rs1/rf+p2*rs2/rf+p3*rs3/rf, A3 = B4*p1+B5*p2+B6*p3, A4 = 1-p1-p2-p3+p1*rs1*cps1/(rf*cpf)+p2*rs2*cps2/(rf*cpf)+p3*rs3*cps3/(rf*cpf))

Record(fw = .2, M = .5, Q = .5, Pr = 6.2, phi = 0.5e-1, rf = 997.1, kf = .613, cpf = 4179, btf = 0.3e-4, p1 = 0.1e-1, p2 = 0.5e-1, p3 = 0.5e-1, rs1 = 5100, ks1 = 3007.4, cps1 = 410, bs1 = 0.2e-3, rs2 = 2200, ks2 = 5000, cps2 = 790, bs2 = 0.5e-3, rs3 = 3970, ks3 = 40, cps3 = 765, bs3 = 0.4e-3, A1 = B1*p1+B2*p2+B3*p3, B1 = 1+2.5*phi+6.2*phi^2, B2 = 1+13.5*phi+904.4*phi^2, B3 = 1+37.1*phi+612.6*phi^2, B4 = (ks1+2*kf-2*phi*(kf-ks1))/(ks1+2*kf+phi*(kf-ks1)), B5 = (ks2+3.9*kf-3.9*phi*(kf-ks2))/(ks2+3.9*kf+phi*(kf-ks2)), B6 = (ks3+4.7*kf-4.7*phi*(kf-ks3))/(ks3+4.7*kf+phi*(kf-ks3)), A2 = 1-p1-p2-p3+p1*rs1/rf+p2*rs2/rf+p3*rs3/rf, A3 = B4*p1+B5*p2+B6*p3, A4 = 1-p1-p2-p3+p1*rs1*cps1/(rf*cpf)+p2*rs2*cps2/(rf*cpf)+p3*rs3*cps3/(rf*cpf))

(3)

LB, UB := 0, 1; BCs := [`~`[`=`](([f(x), diff(f(x), x), Theta])(LB), [fw, 1, 1])[], `~`[`=`](([diff(f(x), x), Theta])(UB), [0, 0])[]]

[(f(x))(0) = fw, (diff(f(x), x))(0) = 1, Theta(0) = 1, (diff(f(x), x))(1) = 0, Theta(1) = 0]

(4)

NBVs := [A1*(diff(f(x), x, x))(0) = C*`*f`, -A4*(diff(Theta(x), x))(0) = `Nu*`]; Nu := `Nu*`; Cf := `C*__f`; x0 := Array([LB])

NULL

Solve := module () local nbvs_rhs, Sol, Dsolve, ModuleApply, AccumData, ModuleLoad; export SavedData, Pos, Init;  nbvs_rhs := `~`[rhs](:-NBVs); Dsolve := proc (Sys, Params::(set(name = realcons))) option remember; Sol := dsolve(Sys, _rest, 'numeric'); AccumData(Params); eval(Sol) end proc; ModuleApply := subs(_Sys = {:-BCs[], :-NBVs[], :-ODEs[]}, proc ({ fw::realcons := Params:-fw, Pr::realcons := Params:-Pr, M::realcons := Params:-M, Q::realcons := Params:-Q, phi::realcons := Params:-phi }) Dsolve(_Sys, {_options}, {_rest}[]) end proc); AccumData := proc (params::(set(name = realcons))) local n, nbvs; if Sol::rtable then nbvs := seq(n = Sol[2, 1][1, Pos(n)], n = nbvs_rhs) else nbvs := `~`[`=`](nbvs_rhs, eval(nbvs_rhs, Sol(:-LB)))[] end if; SavedData[params] := Record[packed](params[], nbvs); return  end proc; ModuleLoad := eval(Init); Init := proc () Pos := proc (n::name) local p; option remember; member(n, Sol[1, 1], 'p'); p end proc; SavedData := table(); return  end proc; ModuleLoad() end module

NULL

colseq := [red, green, blue, brown]

#parameter values that remain fixed for the entire set of plots:
Pc:= phi=0.05:
 

#parameter values that remain fixed with each of the four plots::
Ps:= [
   [fw=0.2, Pr=6.2, M=0.5],
   [fw=0.2, Q=0.3, M=0.5],
   [fw=0.2, Pr=6.2, Q=0.3],
   [Q=0.3, Pr=6.2, M=0.5]
]:

#parameter value for each curve
Pv:= [
   Q=[0.2, 0.4, 0.6, 0.8],
   Pr=[0.7, 1.4, 2.1, 2.8],
   M=[0.6, 1.2, 1.8, 2.4],
   fw=[1, 2, 3, 4]
]:
      

for i to nops(Ps) do
   plots:-display(
      [seq(
         plots:-odeplot(
            Solve(lhs(Pv[i])= rhs(Pv[i])[j], Ps[i][], Pc),
            [x, Theta(x)], 'color'= colseq[j], 'legend'= [lhs(Pv[i])= rhs(Pv[i])[j]]
         ),
         j= 1..nops(rhs(Pv[i]))
      )],
      'axes'= 'boxed', 'gridlines'= false,
      'labelfont'= ['TIMES', 'BOLDOBLIQUE', 16],
      'caption'= nprintf(
         cat("\n%a = %4.2f, "$nops(Ps[i])-1, "%a = %4.2f\n\n"), (lhs,rhs)~(Ps[i])[]
      ),
      'captionfont'= ['TIMES', 16]
   )
od;

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

 

for i to nops(Ps) do plots:-display([seq(plots:-odeplot(Solve(lhs(Pv[i]) = rhs(Pv[i])[j], Ps[i][], Pc), [x, D(f(x))], 'color' = colseq[j], 'legend' = [lhs(Pv[i]) = rhs(Pv[i])[j]]), j = 1 .. nops(rhs(Pv[i])))], 'axes' = 'boxed', 'gridlines' = false, 'labelfont' = ['TIMES', 'BOLDOBLIQUE', 16], 'caption' = nprintf(cat(`$`("\n%a = %4.2f, ", nops(Ps[i])-1), "%a = %4.2f\n\n"), `~`[lhs, rhs](Ps[i])[]), 'captionfont' = ['TIMES', 16]) end do

Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system

 

ParamPlot2d := proc (Y::{`module`, procedure}, X::(name = range(realcons)), FP::(list(name = realcons)), { dsolveopts::(list({name, name = anything})) := [] }) plot(proc (x) options operator, arrow; Y(Solve(lhs(X) = x, FP[], 'abserr' = 0.5e-4, 'interpolant' = false, 'output' = x0, dsolveopts[])) end proc, rhs(X), 'numpoints' = 25, 'axes' = 'boxed', 'gridlines' = false, 'labelfont' = ['TIMES', 'BOLDOBLIQUE', 16], 'caption' = nprintf(cat(`$`("%a = %4.2f, ", nops(FP)-1), "%a = %4.2f"), `~`[lhs, rhs](FP)[]), 'captionfont' = ['TIMES', 16], _rest) end proc

#procedure that extracts Nusselt number from dsolve solution:
GetNu:= (Sol::Matrix)-> Sol[2,1][1, Solve:-Pos(:-Nu)]:

Q:= [0.2, 0.4, 0.6]:
plots:-display(
   [seq(
      ParamPlot2d(
         GetNu, fw= 1..4, [M= 0.5],
         'dsolveopts'= [Q= Q[k], Pr=6.2,  phi=0.05],
         'legend'= [Q= Q[k]], 'color'= colseq[k], 'labels'= [fw, Nu]
      ),
      k= 1..nops(Q)
   )]
);

Error, invalid input: ParamPlot2d expects value for keyword parameter dsolveopts to be of type list({name, name = anything}), but received [[.2, .4, .6] = .2, Pr = 6.2, phi = 0.5e-1]

 

NULL

Download surface_dinesh_paper.mw  please help me to solve the problem

Dear all,

consider two lists of complex values :

list1 := [l1,l2,l3,l4,l5]

list2 := [s1,s2,s3,s4,s5].

There is a set of second order differential equation

d^2u(k)/dt^2+I*A*du/dt-B*u=0

where A is sum of elements of list1 and list2 and B is multiplication of their element. Therefore,

d^2u[1](k)/dt^2+I*(l1+s1)*du[1]/dt-(l1*s1)*u[1]=0

d^2u[2](k)/dt^2+I*(l2+s2)*du[2]/dt-(l2*s2)*u[2]=0

d^2u[3](k)/dt^2+I*(l3+s3)*du[3]/dt-(l3*s3)*u[3]=0

d^2u[4](k)/dt^2+I*(l4+s4)*du[4]/dt-(l4*s4)*u[4]=0

d^2u[5](k)/dt^2+I*(l5+s5)*du[5]/dt-(l5*s5)*u[5]=0

How can I create a set of differential equations and initial conditions based on nops(list1), then solve this system of differential equations numerically in Maple.

since u[i] are function of k, next step is to transforme them to real space by inverse fourier transform.

finally save the results and plot them.

Note that for simplisity I wrote a linear equation but it is not. so, because of nonlinear terms it is not possible to use superposition of the solution. I have to take them as coupled system of equations.

====

for example

list1 := [ [0., -5.496799068*10^(-15)-0.*I], [.1, 5.201897725*10^(-16)-1.188994754*I], [.2, 6.924043163*10^(-17)-4.747763855*I], [.3, 2.297497722*10^(-17)-10.66272177*I], [.4, 1.159126178*10^(-17)-18.96299588*I] ] 

list2 :=[ [0., -8.634351786*10^(-7)-67.81404036*I], [.1, -0.7387644021e-5-67.76491234*I], [.2, -0.1433025271e-4-67.59922295*I], [.3, -0.2231598645e-4-67.25152449*I], [.4, -0.3280855430e-4-66.56357035*I] ]

where first element is k and the second value is l_i and s_i

the differential equation is

ode_u[i]:= diff(u[i](t),t$2)+I*(list1[i][2]+list2[i][2])*diff(u[i](t),t)-list1[1][2]*list2[2][2]*u[i](t)=0;

eta is in fourier space where k values are in list1[i][1].

We laso know that f(-k)= - f*(k) where f=list[i][2]

and u[i] as function of k, initially has a Gaussian shape at t=0 in fourier space..

Thanks in advance for your help

restart:
PDEtools[declare](f(x), prime = x):
PDEtools[declare](Theta(x), prime = x):
PDEtools[declare](Phi(x), prime = x):
N := 4; M := .1; Kp := .1; Gr := 0.1e-1; Gc := 0.1e-1; Pr := 1; S := 0.1e-1; Sc := .78; Kc := 0.1e-1; La := 1
f (x):=  sum((p^(i))*f [i] (x), i = 0 .. N) ;
Theta(x):=  sum((p^(i))*Theta[i] (x), i = 0 .. N) ;
Phi(x):= sum((p^(i))*Phi [i] (x), i = 0 .. N);
HPMEq1 := (1-p)*(diff(f(x), x, x, x))+p*(diff(f(x), x, x, x)+(1/2)*(diff(f(x), x, x))*f(x)-(M^2+Kp)*(diff(f(x), x)-La)+Gr*Theta(x)+Gc*Phi(x))
HPMEq2 := (1-p)*(diff(Theta(x), x, x))/Pr+p*((diff(Theta(x), x, x))/Pr+(1/2)*(diff(Theta(x), x))*f(x)+S*Theta(x))
HPMEq3 := (1-p)*(diff(Phi(x), x, x))/Sc+p*((diff(Phi(x), x, x))/Sc+(1/2)*(diff(Phi(x), x))*f(x)+Kc*Phi(x))
for i from 0 to N do equ[1][i] := coeff(HPMEq1, p, i) = 0 end do
for i from 0 to N do equ[1][i] := coeff(HPMEq2, p, i) = 0 end do
for i from 0 to N do equ[1][i] := coeff(HPMEq3, p, i) = 0 end do
cond[1][0] := f[0](0) = 0, (D(f[0]))(0) = 0, Theta[0](0) = 1, Phi[0](0) = 1, Theta[0](5) = 0, Phi[0](5) = 0, (D(f[0]))(5) = 1; for j to N do cond[1][j] := f[j](0) = 0, (D(f[j]))(0) = 0, Theta[j](0) = 0, Phi[j](0) = 0, Theta[j](5) = 0, Phi[j](5) = 0, (D(f[j]))(5) = 0 end do
for i from 0 to N do pdsolve({cond[1][i], equ[1][i]}, f[i](x)); f[i](x) := rhs(%) end do
f(x) := evalf(simplify(sum(f[n](x), n = 0 .. N))); convert(f(x), 'rational'); subs(x = 1, diff(f(x), x))

Please rectify the error
Thank you

Can Maple prove this simple identity  binomial(2*n, n)/2 = binomial(2*n-1, n-1) ,where n is integer and positive. Doing it manually is very easy. My attempt was unsuccessful:

is(binomial(2*n, n)/2=binomial(2*n-1, n-1)) assuming n::posint;

                                                       FAIL

Good day. 

I have been looking into the time series features in Maple and was eager to apply the models to one specific example containing 47 data points (attached).

When I run the ESM routine, Maple provides a forecast based on a (A,N,N) configuration. You will notice that the forecast for the following 12 data points is a constant value. I have also noticed this for several other data set examples and I would have expected the predictions to vary across the next 12 data points.

Does the (A,N,N) configuration in Maple automatically provide an optimal forecast and can anyone advise me on how to specify all possible combinations of (error, trend, season) models?

Thanks you for reading.

MaplePrimes_TS_Example.mw

Dear All

Same calculation, but Maple gave 2 different results, when I used 2 different input methods, using palettes and through Maple Tutors, respectively (image). Can someone explain to me the reason?

Good Day.

I have attached a worksheet for a time series that comprises 45 data points. I would like to investigate the overall demand (for forecasting purposes) and to isolate the underlying demand components; that is, trend, level, seasonal, and residual. However, I have difficulty in distinguishing each component in the plot as the colors appear to be similar and some may have relatively small values.

Does anyone know how to recolor these components so they appear to be more obvious? It would be also beneficial to isolate and plot each individual component - can that be done?

Thanks for your interest!

MaplePrimes_Time_Series.mw

Hello.

If I input 'floor(5.5)' in Maple 2018 I get the expected \lfloor 5.5 \rfloor thing.  I mean, with the special brackets typical for the floor notation.

However, if I try to place the floor notation onto a plot I get literally the string "floor(5.5)".  As in

  textplot([2, 2, 'floor(5.5)'])

The ' ' quotation marks ensure the delayed evaluation but I do not get the floor parentheses! 

Interestingly,

  textplot([2, 2, 'sqrt(5.5)'])

outputs the radical notation as expected.

How come I cannot produce a plot with the floor brackets notation in it?

Thanks

Minko

4 5 6 7 8 9 10 Last Page 6 of 62