Maple 2021 Questions and Posts

These are Posts and Questions associated with the product, Maple 2021

How can I produce a graph with various values for parameters? I also attached a sample of my Maple code.

restart

with(plots);
with(plottools);
with(DEtools);

eqn1 := diff(V(t), t) = pi*p - (alpha + mu)*V(t), V(0) = ic1

eqn2 := diff(S(t), t) = alpha*V(t) + (1 - p)*pi - beta*S(t)*In(t)/N - mu*S(t), S(0) = ic2

eqn3 := diff(In(t), t) = beta*S(t)*In(t)/N - (mu + delta + gamma)*In(t), In(0) = ic3

eqn4 := diff(R(t), t) = gamma*In(t) - mu*R(t), R(0) = ic4

pi := 487845;
p := 0.948;
alpha := 0.054;
beta := 0.955;
mu := 0.005;
delta := 0.03;
localgamma := 0.935;
ic1 := 484465;
ic2 := 31999760;
ic3 := 26305;
ics4 := 12470;
dsol := dsolve([eqn1, eqn2, eqn3, eqn4], numeric);

odeplot(dsol, [[t, V(t), color = plum], [t, S(t), color = blue], [t, In(t), color = cyan], [t, R(t), color = green]], t = 0 .. 1000, view = [0 .. 1000, 0 .. 300000000], thickness = 3)
 

Let's say I want to produce a graph for eqn1 with various values of parameter p: p = 0.2, p = 0.5, p = 0.7, p = 0.8. How should I produce it?

I have created a several matrices for my analysis. I want to plot the determinant value of matrix vs the omega. The matrix that should be plotted is named as FINAL. I am not able to do that due to large value of matrix determinant. How to simplify the matrix and get  plot.

restart

with(LinearAlgebra)

k1 := 4172976683.88513

k2 := 3322653306.61138``

nu := 62.83

l[9] := .676

l[8] := .676

l[7] := .218

l[6] := .255+.4*0

l[5] := .435+.4*0

l[4] := .435

l[3] := .456

l[2] := .577*.5

l[11] := .577*.5

l[12] := .577*.5

l[1] := .577*.5

i[9] := (1/64)*Pi*.355^4

i[8] := (1/64)*Pi*.355^4

i[7] := (1/64)*Pi*.419^4

i[6] := (1/64)*Pi*.543^4

i[5] := (1/64)*Pi*.698^4

i[4] := (1/64)*Pi*.698^4

i[3] := (1/64)*Pi*.67^4

i[2] := (1/64)*Pi*.45^4

i[11] := (1/64)*Pi*.45^4

i[12] := (1/64)*Pi*.45^4

i[1] := (1/64)*Pi*.45^4

m[0] := 2800

m[1] := 7850*(.25*Pi*.45^2*1.154)*(1/3)

NULLm[3] := 7850*(.25*Pi*.67^2*.456)

m[4] := 7850*(.25*Pi*.698^2*.870)

m[5] := 7850*(.25*Pi*.590^2*.8)+30715

m[6] := 7850*(.25*Pi*.543^2*.255)

m[7] := 7850*(.25*Pi*.419^2*.218)

m[8] := 7850*(.25*Pi*.355^2*1.132)NULL

E := 210*10^9

Id[0] := .5*825

Id[5] := (1/2)*(18.4*1000)+(30715/12)*.8^2*0+7850*(.25*Pi*.590^2*.8)*(.5*.590)^2*(1/4)+(.8*((1/12)*Pi*.590^2*.25)*7850)*.8^2*0

NULL

NULL

F9 := Matrix([[1, l[9], l[9]^2/(2*E*i[9]), l[9]^3/(6*E*i[9]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[9]/(E*i[9]), l[9]^2/(2*E*i[9]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[9], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[9], l[9]^2/(2*E*i[9]), l[9]^3/(6*E*i[9]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[9]/(E*i[9]), l[9]^2/(2*E*i[9]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[9], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[9], l[9]^2/(2*E*i[9]), l[9]^3/(6*E*i[9]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9]/(E*i[9]), l[9]^2/(2*E*i[9]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9], l[9]^2/(2*E*i[9]), l[9]^3/(6*E*i[9]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9]/(E*i[9]), l[9]^2/(2*E*i[9]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[9], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``

NULL
F8 := Matrix([[1, l[8], l[8]^2/(2*E*i[8]), l[8]^3/(6*E*i[8]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[8]/(E*i[8]), l[8]^2/(2*E*i[8]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[8], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[8], l[8]^2/(2*E*i[8]), l[8]^3/(6*E*i[8]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[8]/(E*i[8]), l[8]^2/(2*E*i[8]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[8], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[8], l[8]^2/(2*E*i[8]), l[8]^3/(6*E*i[8]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8]/(E*i[8]), l[8]^2/(2*E*i[8]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8], l[8]^2/(2*E*i[8]), l[8]^3/(6*E*i[8]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8]/(E*i[8]), l[8]^2/(2*E*i[8]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[8], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL

F7 := Matrix([[1, l[7], l[7]^2/(2*E*i[7]), l[7]^3/(6*E*i[7]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[7]/(E*i[7]), l[7]^2/(2*E*i[7]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[7], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[7], l[7]^2/(2*E*i[7]), l[7]^3/(6*E*i[7]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[7]/(E*i[7]), l[7]^2/(2*E*i[7]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[7], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[7], l[7]^2/(2*E*i[7]), l[7]^3/(6*E*i[7]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7]/(E*i[7]), l[7]^2/(2*E*i[7]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7], l[7]^2/(2*E*i[7]), l[7]^3/(6*E*i[7]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7]/(E*i[7]), l[7]^2/(2*E*i[7]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[7], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL

F6 := Matrix([[1, l[6], l[6]^2/(2*E*i[6]), l[6]^3/(6*E*i[6]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[6]/(E*i[6]), l[6]^2/(2*E*i[6]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[6], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[6], l[6]^2/(2*E*i[6]), l[6]^3/(6*E*i[6]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[6]/(E*i[6]), l[6]^2/(2*E*i[6]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[6], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[6], l[6]^2/(2*E*i[6]), l[6]^3/(6*E*i[6]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6]/(E*i[6]), l[6]^2/(2*E*i[6]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6], l[6]^2/(2*E*i[6]), l[6]^3/(6*E*i[6]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6]/(E*i[6]), l[6]^2/(2*E*i[6]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[6], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

````

F5 := Matrix([[1, l[5], l[5]^2/(2*E*i[5]), l[5]^3/(6*E*i[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[5]/(E*i[5]), l[5]^2/(2*E*i[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[5], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[5], l[5]^2/(2*E*i[5]), l[5]^3/(6*E*i[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[5]/(E*i[5]), l[5]^2/(2*E*i[5]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[5], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[5], l[5]^2/(2*E*i[5]), l[5]^3/(6*E*i[5]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5]/(E*i[5]), l[5]^2/(2*E*i[5]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5], l[5]^2/(2*E*i[5]), l[5]^3/(6*E*i[5]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5]/(E*i[5]), l[5]^2/(2*E*i[5]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[5], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

F4 := Matrix([[1, l[4], l[4]^2/(2*E*i[4]), l[4]^3/(6*E*i[4]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[4]/(E*i[4]), l[4]^2/(2*E*i[4]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[4], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[4], l[4]^2/(2*E*i[4]), l[4]^3/(6*E*i[4]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[4]/(E*i[4]), l[4]^2/(2*E*i[4]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[4], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[4], l[4]^2/(2*E*i[4]), l[4]^3/(6*E*i[4]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4]/(E*i[4]), l[4]^2/(2*E*i[4]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4], l[4]^2/(2*E*i[4]), l[4]^3/(6*E*i[4]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4]/(E*i[4]), l[4]^2/(2*E*i[4]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[4], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

F3 := Matrix([[1, l[3], l[3]^2/(2*E*i[3]), l[3]^3/(6*E*i[3]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[3]/(E*i[3]), l[3]^2/(2*E*i[3]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[3], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[3], l[3]^2/(2*E*i[3]), l[3]^3/(6*E*i[3]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[3]/(E*i[3]), l[3]^2/(2*E*i[3]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[3], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[3], l[3]^2/(2*E*i[3]), l[3]^3/(6*E*i[3]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3]/(E*i[3]), l[3]^2/(2*E*i[3]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3], l[3]^2/(2*E*i[3]), l[3]^3/(6*E*i[3]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3]/(E*i[3]), l[3]^2/(2*E*i[3]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[3], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

F2 := Matrix([[1, l[2], l[2]^2/(2*E*i[2]), l[2]^3/(6*E*i[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[2]/(E*i[2]), l[2]^2/(2*E*i[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[2], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[2], l[2]^2/(2*E*i[2]), l[2]^3/(6*E*i[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[2]/(E*i[2]), l[2]^2/(2*E*i[2]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[2], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[2], l[2]^2/(2*E*i[2]), l[2]^3/(6*E*i[2]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2]/(E*i[2]), l[2]^2/(2*E*i[2]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2], l[2]^2/(2*E*i[2]), l[2]^3/(6*E*i[2]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2]/(E*i[2]), l[2]^2/(2*E*i[2]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[2], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

F1 := Matrix([[1, l[1], l[1]^2/(2*E*i[1]), l[1]^3/(6*E*i[1]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[1]/(E*i[1]), l[1]^2/(2*E*i[1]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[1], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[1], l[1]^2/(2*E*i[1]), l[1]^3/(6*E*i[1]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[1]/(E*i[1]), l[1]^2/(2*E*i[1]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[1], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[1], l[1]^2/(2*E*i[1]), l[1]^3/(6*E*i[1]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1]/(E*i[1]), l[1]^2/(2*E*i[1]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1], l[1]^2/(2*E*i[1]), l[1]^3/(6*E*i[1]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1]/(E*i[1]), l[1]^2/(2*E*i[1]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[1], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL

F11 := Matrix([[1, l[11], l[11]^2/(2*E*i[11]), l[11]^3/(6*E*i[11]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[11]/(E*i[11]), l[11]^2/(2*E*i[11]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[11], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[11], l[11]^2/(2*E*i[11]), l[11]^3/(6*E*i[11]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[11]/(E*i[11]), l[11]^2/(2*E*i[11]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[11], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[11], l[11]^2/(2*E*i[11]), l[11]^3/(6*E*i[11]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11]/(E*i[11]), l[11]^2/(2*E*i[11]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11], l[11]^2/(2*E*i[11]), l[11]^3/(6*E*i[11]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11]/(E*i[11]), l[11]^2/(2*E*i[11]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[11], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL

F12 := Matrix([[1, l[12], l[12]^2/(2*E*i[12]), l[12]^3/(6*E*i[12]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, l[12]/(E*i[12]), l[12]^2/(2*E*i[12]), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, l[12], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, l[12], l[12]^2/(2*E*i[12]), l[12]^3/(6*E*i[12]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, l[12]/(E*i[12]), l[12]^2/(2*E*i[12]), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, l[12], 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, l[12], l[12]^2/(2*E*i[12]), l[12]^3/(6*E*i[12]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12]/(E*i[12]), l[12]^2/(2*E*i[12]), 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12], 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12], l[12]^2/(2*E*i[12]), l[12]^3/(6*E*i[12]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12]/(E*i[12]), l[12]^2/(2*E*i[12]), 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, l[12], 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``

P0 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -omega^2*Id[0], 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*Id[0]*nu*omega, 0, 0, 0], [m[0]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -omega^2*Id[0], 1, 0, 0, -2*Id[0]*nu*omega, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[0]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2*Id[0]*nu*omega, 0, 0, 0, -omega^2*Id[0], 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[0]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, -2*Id[0]*nu*omega, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -omega^2*Id[0], 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[0]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
P1 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
P11 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
P12 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[1]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
NULL

NULL
P3 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[3]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[3]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[3]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[3]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``

NULL
P4 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[4]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[4]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[4]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[4]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``NULL

P5 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, -omega^2*Id[5], 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2*Id[5]*nu*omega, 0, 0, 0], [m[5]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -omega^2*Id[5], 1, 0, 0, -2*Id[5]*nu*omega, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[5]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 2*Id[5]*nu*omega, 0, 0, 0, -omega^2*Id[5], 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[5]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, -2*Id[5]*nu*omega, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -omega^2*Id[5], 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[5]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
P6 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[6]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[6]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[6]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[6]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULLNULL
P7 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[7]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[7]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[7]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[7]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULLNULL
P8 := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [m[8]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, m[8]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, m[8]*omega^2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, m[8]*omega^2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])

NULL
UA := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-k1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -k1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -k1, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -k1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
``

NULL
UB := Matrix([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [-k2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -k2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -k2, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -k2, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]])
NULL``

NULL

NULL

NULL

NULL

NULL

NULL

NULL

N0 := Multiply(UB, F9)

N1 := Multiply(N0, P8)

N2 := Multiply(N1, F8)

N3 := Multiply(N2, P7)

N4 := Multiply(N3, F7)

N5 := Multiply(N4, P6)

N6 := Multiply(N5, F6)

N7 := Multiply(N6, P5)

N8 := Multiply(N7, F5)

N9 := Multiply(N8, P4)

N10 := Multiply(N9, F4)

N11 := Multiply(N10, P3)

N12 := Multiply(N11, F3)

N13 := Multiply(N12, UA)

N14 := Multiply(N13, F2)

N15 := Multiply(N14, P12)

N16 := Multiply(N15, F12)

N17 := Multiply(N16, P11)

N18 := Multiply(N17, F11)

N19 := Multiply(N18, P1)

N20 := Multiply(N19, F1)

N21 := Multiply(N20, P0)NULL

NULL

NULL

NULL

NULL

NULL``

NULL

Z31 := N21[3, 1]``

Z32 := N21[3, 2]NULL

Z35 := N21[3, 5]

Z36 := N21[3, 6]NULL

Z39 := N21[3, 9]NULL

Z310 := N21[3, 10]``

Z313 := N21[3, 13]

Z314 := N21[3, 14]

NULL

Z41 := N21[4, 1]NULL

Z42 := N21[4, 2]``

Z45 := N21[4, 5]

Z46 := N21[4, 6]NULL

Z49 := N21[4, 9]``

Z410 := N21[4, 10]NULL

Z413 := N21[4, 13]

Z414 := N21[4, 14]

NULL

NULL

Z71 := N21[7, 1]``

Z72 := N21[7, 2]NULL

Z75 := N21[7, 5]

Z76 := N21[7, 6]NULL

Z79 := N21[7, 9]NULL

Z710 := N21[7, 10]``

Z713 := N21[7, 13]

Z714 := N21[7, 14]

NULLNULL

Z81 := N21[8, 1]NULL

Z82 := N21[8, 2]``

Z85 := N21[8, 5]

Z86 := N21[8, 6]NULL

Z89 := N21[8, 9]``

Z810 := N21[8, 10]NULL

Z813 := N21[8, 13]

Z814 := N21[8, 14]

NULL

NULLZ111 := N21[11, 1]``

Z112 := N21[11, 2]NULL

Z115 := N21[11, 5]

Z116 := N21[11, 6]NULL

Z119 := N21[11, 9]NULL

Z1110 := N21[11, 10]``

Z1113 := N21[11, 13]

Z1114 := N21[11, 14]

NULL

NULL

Z121 := N21[12, 1]NULL

Z122 := N21[12, 2]``

Z125 := N21[12, 5]

Z126 := N21[12, 6]NULL

Z129 := N21[12, 9]``

Z1210 := N21[12, 10]NULL

Z1213 := N21[12, 13]

Z1214 := N21[12, 14]

NULL

NULLZ151 := N21[15, 1]``

Z152 := N21[15, 2]NULL

Z155 := N21[15, 5]

Z156 := N21[15, 6]NULL

Z159 := N21[15, 9]NULL

Z1510 := N21[15, 10]``

Z1513 := N21[15, 13]

Z1514 := N21[15, 14]

NULL

Z161 := N21[16, 1]NULL

Z162 := N21[16, 2]``

Z165 := N21[16, 5]

Z166 := N21[16, 6]NULL

Z169 := N21[16, 9]``

Z1610 := N21[16, 10]NULL

Z1613 := N21[16, 13]

Z1614 := N21[16, 14]

NULL

FINAL := Matrix([[Z31, Z32, Z35, Z36, Z39, Z310, Z313, Z314], [Z41, Z42, Z45, Z46, Z49, Z410, Z413, Z414], [Z71, Z72, Z75, Z76, Z79, Z710, Z713, Z714], [Z81, Z82, Z85, Z86, Z89, Z810, Z813, Z814], [Z111, Z112, Z115, Z116, Z119, Z1110, Z1113, Z1114], [Z121, Z122, Z125, Z126, Z129, Z1210, Z1213, Z1214], [Z151, Z152, Z155, Z156, Z159, Z1510, Z1513, Z1514], [Z161, Z162, Z165, Z166, Z169, Z1610, Z1613, Z1614]])

NULLF := Determinant(FINAL)/10^77

HFloat(173.47261448575398)

(1)

NULL

Error, (in plot) unexpected option: 160 = 120 .. 130

 

NULL

Download Plot_determinant_value_vs_omega.mw

Can someone kind help me? I encountered two issues when using the pdsolve function in Maple to obtain numerical solutions for partial differential equations. The first issue pertains to setting up the initial/boundary conditions correctly, and the second issue relates to configuring the plotting options. I'm wondering how to modify them in order to run the code correctly and generate the desired plots.

question.mw

How to find Z(t) matrix(array) =[ [z[1,0](t),z[1,1](t)],[z[2,0](t),z[2,1](t)]]

restart;

with(IntegrationTools):with(Physics):

 

 

 

h1 := (m,n)->(n+1/2)*KroneckerDelta[n,m];

proc (m, n) options operator, arrow; Physics:-`*`(n+Physics:-`*`(1, Physics:-`^`(2, -1)), Physics:-KroneckerDelta[n, m]) end proc

(1)

h2 := (mu,nu,m2,l)->-(nu*Pi/l)^2/(2*m2)*KroneckerDelta[mu,nu];

proc (mu, nu, m2, l) options operator, arrow; Physics:-`*`(-1, Physics:-`*`(Physics:-`^`(Physics:-`*`(nu, Pi, Physics:-`^`(l, -1)), 2), Physics:-`^`(Physics:-`*`(2, m2), -1), Physics:-KroneckerDelta[mu, nu])) end proc

(2)

v1 := (m,n,m1)->sqrt(min(n,m)!/max(n,m)!)*(2*m1)^(-abs(n-m)/2)*exp(-1/(4*m1))*LaguerreL(min(n,m),abs(n-m),-1/(2*m1));

proc (m, n, m1) options operator, arrow; Physics:-`*`(sqrt(Physics:-`*`(factorial(min(n, m)), Physics:-`^`(factorial(max(n, m)), -1))), Physics:-`^`(Physics:-`*`(2, m1), Physics:-`*`(-1, Physics:-`*`(abs(n-m), Physics:-`^`(2, -1)))), exp(Physics:-`*`(-1, Physics:-`*`(1, Physics:-`^`(Physics:-`*`(4, m1), -1)))), LaguerreL(min(n, m), abs(n-m), Physics:-`*`(-1, Physics:-`*`(1, Physics:-`^`(Physics:-`*`(2, m1), -1))))) end proc

(3)

v2 := (mu,nu,l)->4*Pi^2*l*mu*nu*(exp(l/2)-(-1)^(mu+nu)*exp(-l/2))/((Pi*(mu+nu))^2+l^2)/((Pi*(mu-nu))^2+l^2);

proc (mu, nu, l) options operator, arrow; Physics:-`*`(4, Physics:-`^`(Pi, 2), l, mu, nu, exp(Physics:-`*`(l, Physics:-`^`(2, -1)))-Physics:-`*`(Physics:-`^`(-1, mu+nu), exp(Physics:-`*`(-1, Physics:-`*`(l, Physics:-`^`(2, -1))))), Physics:-`^`(Physics:-`^`(Physics:-`*`(Pi, mu+nu), 2)+Physics:-`^`(l, 2), -1), Physics:-`^`(Physics:-`^`(Physics:-`*`(Pi, mu-nu), 2)+Physics:-`^`(l, 2), -1)) end proc

(4)

h:=(m,n,mu,nu,m1,m2,l)->evalf(h1(m,n)+h2(mu,nu,m2,l)+v1(m,n,m1)+v2(mu,nu,l));

proc (m, n, mu, nu, m1, m2, l) options operator, arrow; evalf(h1(m, n)+h2(mu, nu, m2, l)+v1(m, n, m1)+v2(mu, nu, l)) end proc

(5)

m1:=1:m2:=1:l:=1:

H:= (m,n,mu,nu)->h(m,n,mu,nu,m1,m2,l);

proc (m, n, mu, nu) options operator, arrow; h(m, n, mu, nu, m1, m2, l) end proc

(6)

H(1,1,0,0);

2.668201175

(7)

eq1:= diff(z(m,nu,t),t)=-I*Sum(Sum(H(m,n,mu,nu)*z(n,mu,t),n=1..N),mu=0..M);

diff(z(m, nu, t), t) = -I*(Sum(Sum(((n+.5000000000)*Physics:-KroneckerDelta[m, n]-4.934802202*nu^2*Physics:-KroneckerDelta[mu, nu]+.7788007831*(factorial(min(m, n))/factorial(max(m, n)))^(1/2)*2.^(-.5000000000*abs(-1.*n+m))*LaguerreL(min(m, n), abs(-1.*n+m), -.5000000000)+39.47841762*mu*nu*(1.648721271-.6065306597*(-1.)^(mu+nu))/((9.869604404*(mu+nu)^2+1.)*(9.869604404*(mu-1.*nu)^2+1.)))*z(n, mu, t), n = 1 .. N), mu = 0 .. M))

(8)

 

zint := Array([[1,0],[0,1]]);

Matrix(2, 2, {(1, 1) = 1, (1, 2) = 0, (2, 1) = 0, (2, 2) = 1})

(9)

Z:= Array(1..2,1..2);
 for i from 1to 2 do
    for j from 1 to 2 do
        Z[i,j]:= dsolve({eq1,zint[i,j]},numeric,output=listprocedure);
    end do;
end do;

 

Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 0})

 

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

 

Download test3.mw

how to write the code for integration of the orthogonal cosine function with nu=mu or with nu<>mu

restart;

 

phi:= (mu,Q2)->sqrt(2/l)*sin(mu*Pi*(Q2+l/2)/l);    # E:=mu->(Pi*mu/sqrt(2)/l)^2, mu=1,2...

proc (mu, Q2) options operator, arrow; sqrt(2/l)*sin(mu*Pi*(Q2+(1/2)*l)/l) end proc

(1)

fh1:=simplify((-1/2/m2*Int(diff(phi(mu,Q2),Q2)*diff(phi(nu,Q2),Q2),Q2=-l/2..l/2)))

-mu*Pi^2*nu*(Int(cos((1/2)*mu*Pi*(2*Q2+l)/l)*cos((1/2)*nu*Pi*(2*Q2+l)/l), Q2 = -(1/2)*l .. (1/2)*l))/(l^3*m2)

(2)

convert(fh1,int) assuming(mu,integer,nu,integer);

0

(3)

fh1_subs := simplify(subs(nu = mu, fh1));

-mu^2*Pi^2*(Int(cos((1/2)*mu*Pi*(2*Q2+l)/l)^2, Q2 = -(1/2)*l .. (1/2)*l))/(l^3*m2)

(4)

convert(fh1_substituted,int)assuming (mu,integer,nu,integer);

-(1/2)*mu^2*Pi^2/(l^2*m2)

(5)

 

Download test1.mw

Hi all,

I would like to use the command ConvertIn() from the Galois Field package to convert polynomials to field elements.

This is what I've done:

G:=GF(2,4)
                        G := &Fopf;[16]

b:=G:-random()
                          b := T mod 2

s:=G:-ConvertIn(T)
Error, (in ConvertIn) only integer polynomials in T can be converted

Why is this error showing up?? My argument of the command ConvertIn IS an integer polynomial in T.

How can I avoid this error?

Thanks for your help!

BR David

restart;  
with(geometry):  
with(plots):  
_EnvHorizontalName = 'x':  _EnvVerticalName = 'y':
point(A, -1, 9):                                                                                                       
point(B, -5, 0):
point(C, 6, 0):
triangle(ABC,[A,B,C]):
midpoint(M1,A,C): midpoint(M2,B,C):midpoint(M3,A,B):
rotation(J, C, Pi/2, 'counterclockwise', M1):triangle(AJC,[A,J,C]):
rotation(Ii, C, Pi/2, 'counterclockwise', M2):triangle(BIC,[B,Ii,C]):
rotation(K, A, Pi/2, 'counterclockwise', M3):triangle(AKB,[A,K,B]):
midpoint(O1,K,J): coordinates(O1):
midpoint(O2,A,Ii): coordinates(O2):  
poly:=[coordinates(A),coordinates(J),coordinates(Ii),coordinates(K)]:   

display(draw([A(color = black, symbol = solidcircle, symbolsize = 12), 
B(color = black, symbol = solidcircle, symbolsize = 12), 
C(color = black, symbol = solidcircle, symbolsize = 12), 
J(color = black, symbol = solidcircle, symbolsize = 12), 
polygonplot(poly,color = "DarkGreen", transparency = 0.5),
ABC(color = red ),
BIC(color = green),
AKB(color = grey),
AJC(color =blue)]),
textplot([[coordinates(A)[], "A"],[coordinates(J)[], "J"],[coordinates(Ii)[], "I"],   
[coordinates(B)[], "B"], [coordinates(K)[], "K"], 
[coordinates(C)[], "C"]], 
align = [above, right]),  axes = none);
Error, (in geometry:-draw) the option must be of type equation or name. I don't see how to correct this error/
 

I have some large systems of linear equations.  The solutions are probability generating functions.  I can get solutions in a few minutes for systems of up to n= 200 eqns or so, but Maple just cycles indefinitely if I try to solve much larger systems.  I really only need to perform Gaussian Elimination, as I only need to solve for one of the n solutions.  The matrices are sparse, there are only 3 non-zero entries per row.  I tried to get help from the manuals but I get the impression that sparse solutions are only available for numeric computations.   Doesn't Maple allow for sparse symbolic solutions?  If so, how to do it?

Does anyone know how to remove this boring notation? I would like to know why Maple does not give me "± 2x". Thanks in advance.

 

I am trying to define a Tensor expression in the physics package but it seems to be taking eons to do so, it has been running for quite some time but still no result to the point where I halt the computation. 

Does anyone have any ideas on how I could accelerate the process? 

I have attached the file I am working with. 

Define.mw

How can I solve Einstein’s equation and calculus of the value of the K constant in Einstein's equation and the value of the tensor stress energy that fits in this equation?

   

 

QTBend.docxSqBend.mw

what is the homology matrix that plates the ABCE square on the NPCM square
I think it may bi find out with the rotation angle, the vector of translation and the homothety ratio.
restart;  
with(geometry):  
with(plots):  
_EnvHorizontalName = 'x':  _EnvVerticalName = 'y':

point(A, 0, 1):
point(B, 1, 1):
point(C, 1, 0):
point(E, 0, 0):
square(Sq, [A, B, C, E]):
Phi := (1 + sqrt(5))/2:
point(N, (2 - Phi)/(Phi - 1), 1):
line(BE, [B, E]):
MakeSquare(s1, [N, C, 'diagonal']):
point(M, (3 - sqrt(5))/(2*sqrt(5) - 2), (3 - sqrt(5))/(2*sqrt(5) - 2)):
point(P, (1 + sqrt(5))/(2*sqrt(5) - 2), (3*sqrt(5) - 5)/(2*sqrt(5) - 2)):
T:=<simplify(coordinates(midpoint(O1,E,B))-coordinates(midpoint(O2,M,P)))>:
simplify(distance(O1,O2)):
line(MN,[M,N]):eq:=Equation(%,[x,y]):sol:=solve(eq,y):
Ang:=Pi/2-arctan(diff(sol,x)):
r:=simplify(distance(N,M)):
line(MP,[M,P]):eq:=Equation(%,[x,y]):subs(y=0,%):point(Q,solve(%,x),0):
line(PQ,[P,Q]):
homology(Sq1, Sq, C, Ang, 'clockwise', r):


display(draw([A(color = black, symbol = solidcircle, symbolsize = 12), 
B(color = black, symbol = solidcircle, symbolsize = 12), 
C(color = black, symbol = solidcircle, symbolsize = 12), 
E(color = black, symbol = solidcircle, symbolsize = 12), 
N(color = black, symbol = solidcircle, symbolsize = 12), 
Sq(color = red, filled = true, transparency = 0.9), 
BE(color = green), 
PQ(color = black),
 Sq1(color = black), 
s1(color = red, filled = true, transparency = 0.8)]), 
textplot([[coordinates(A)[], "A"], 
[coordinates(B)[], "B"], 
[coordinates(E)[], "E"], 
[coordinates(N)[], "N"], 
[coordinates(P)[], "P"], 
[coordinates(M)[], "M"], 
[coordinates(Q)[], "Q"], 
[coordinates(C)[], "C"]], 
align = [above, right]), view = [-0.6 .. 1.5, 0 .. 1], axes = none);
 

Hi,

I am struggling with a task of creating a 2D contourplot of temperature values showing Iso-Lines (lines of equal temperatures in steps of 100°C).

I have a set of temperature values with corresponding x and y coordinates of a cross section. The data is given as an unsorted set of X-Y-Temperature data:

[[177.80000,0.,967.3266667],[169.80000,0.,963.5900000],[100.00000,0.,188.8933333],[176.92000,17.703000,967.3266667],[174.27000,35.230000,967.3200000],[169.90000,52.407000,967.3566667],[163.84000,69.064000,967.3366667],[156.15000,85.034000,967.3100000],[146.91000,100.16000,967.3366667],[136.20000,114.29000,967.3666667],...]

I can plot the data as a 3D pointplot and assign colors based on the temperature value:

plots:-pointplot3d(<ThermRes(2 .. (), 2) | ThermRes(2 .. (), 3) | ThermRes(2 .. (), TimeCol)>, colorscheme = ["zgradient", ["blue", "green", "yellow", "orange", "red"]], style = point, symbol = solidsphere, symbolsize = 20)

For better visualization, I would like to plot this data in a 2D contourplot showing coloured Iso-lines in 100°C steps, similar to the following scheme:

I know this is not directly possible from xyz datapoints. Therefore, I was trying to create an interpolation function using the Interpolation package. I have tried to find out if it is possible to get a working interpolation function for my data, but it seems like the x and y coordinates must be always in increasing order and there has to be a z value (temperature data point) for each pair of coordinates in matrix form, is that correct? Unfortunately, as you can see above, my x-y coordinate pairs are irregular and unsorted and I do not have a temperature value for every combination of x and y coordinate values.

Is there any way how to find an interpolation function for this kind of data that would enable a contourplot? Or any other ideas how to create a coloured 2D plot from this data with a legend showing the 100°C temperature color values?

Greetings, Oliver

Could you help me how to deal with this problem?

restart;

with(plots):with(plottools):with(DETools):

 

Sys:=diff(T(R),R)=((1-1/R)*(sqrt(1-(alpha/R)^2*(1-1/R))))^(-1),diff(Phi(R),R)=(alpha/R)^2*(sqrt(1-(alpha/R)^2*(1-1/R)))^(-1);

diff(T(R), R) = 1/((1-1/R)*(1-alpha^2*(1-1/R)/R^2)^(1/2)), diff(Phi(R), R) = alpha^2/(R^2*(1-alpha^2*(1-1/R)/R^2)^(1/2))

(1)

 

inits:=[[T(0)=0.5,Phi(0)=0],[T(0)=0.5,Phi(0)=Pi/4]];

[[T(0) = .5, Phi(0) = 0], [T(0) = .5, Phi(0) = (1/4)*Pi]]

(2)

K:=dsolve([Sys,op(op(1,inits))],[Phi(R),T(R)],numeric,parameters=[alpha],output=listprocedure);

Error, (in dsolve/numeric/make_proc) ode system is singular at the initial point

 

 

Download HW6.m

Hi

I get the following error: "Error, (in dsolve) invalid input: 'PDEtols/sdsolve' expects its 1st argument, SYS, to be of type OR(set(..."

I don't know what's wrong. My equations look like a set to me.

My equations:

{0 = -F__Ay - F__By, 0 = 25*F__Oy + 25*F__Ay - 25*F__By, diff(theta__1(t), t)*t - theta__1(t) = 0, -x__1(t) + 25*cos(theta__1(t)) = 0, -y__1(t) + 25*sin(theta__1(t)) = 0, (2500*cos(theta__1(t))*diff(theta__1(t), t)*pi)/3 - 50*cos(theta__1(t))*diff(theta__2(t), t)*theta__2(t) = F__Ax + F__Ox + F__Bx, (2500*cos(theta__1(t))*diff(theta__1(t), t)*pi)/3 - 50*cos(theta__1(t))*diff(theta__2(t), t)*theta__2(t) = F__Ay + F__Oy + F__By, diff(theta__2(t), t)*t - Pi/4 - theta__2(t) = 0, x__1(t) + 25*cos(theta__1(t)) - x__2(t) - 50*cos(theta__2(t)) = 0, y__1(t) + 25*sin(theta__1(t)) - y__2(t) - 50*sin(theta__2(t)) = 0, (1250*cos(theta__1(t))*diff(theta__1(t), t)*pi)/3 = -F__Ax - F__Bx, (1250*cos(theta__1(t))*diff(theta__1(t), t)*pi)/3 = -50*F__Ay + 50*F__By}

My solve:

dsolve({eqs[1] = 0, eqs[2] = 0, eqs[3] = 0, eqs[4] = 0, eqs[5] = 0, eqs[6] = 0, eqs_Mq[1] = eqs_g[3], eqs_Mq[1] = eqs_g[6], eqs_Mq[2] = eqs_g[1], eqs_Mq[2] = eqs_g[2], eqs_Mq[3] = eqs_g[4], eqs_Mq[3] = eqs_g[5]}, numeric)

Anyone can tell me what I'm doing wrong?

clutch.mw

First 6 7 8 9 10 11 12 Last Page 8 of 40