Maple 2022 Questions and Posts

These are Posts and Questions associated with the product, Maple 2022

how I can plot phi[2] as a contour like attached figure?

tez-1.mw


 

restart

``

beta := 2.5; lambda := 0.1e-1; b := Pi; a := Pi; alpha := 1; y[1] := 1.5; y[2] := 1.5; x[1] := -1; x[2] := 1; Q[1] := 40; Q[2] := 35

2.5

 

0.1e-1

 

Pi

 

Pi

 

1

 

1.5

 

1.5

 

-1

 

1

 

40

 

35

(1)

NULL

NULL

v := (2*n-1)*Pi/(2*b)

n-1/2

(2)

Delta := exp(2*v*a)*(alpha*v+beta)*(1+lambda)-(1-lambda)*(alpha*v-beta)

1.01*exp(2*(n-1/2)*Pi)*(n+2.000000000)-.99*n+2.970000000

(3)

g[22] := ((alpha*v+beta)*((1+lambda)*exp(-v*abs(x-xi))+(-1+lambda)*exp(-v*(x+xi)))*exp(2*v*a)+(alpha*v-beta)*((1+lambda)*exp(-v*(x+xi))+(-1+lambda)*exp(-v*abs(x-xi))))/(2*v*Delta)

g[21] := ((alpha*v+beta)*exp(v*(2*a+xi))+(alpha*v-beta)*exp(-v*xi))*exp(-v*x)/(v*Delta)

NULL

u[2] := int(2*g[21]*Q[1]*Dirac(xi-x[1])*sin(n*Pi*y[1]/b)/b, xi = -a .. 0)+int(2*g[22]*Q[2]*Dirac(xi-x[2])*sin(n*Pi*y[2]/b)/b, xi = 0 .. infinity)

NULL

phi[2] := sum(u[2](x)*sin(v*y), n = 1 .. 30)

NULL

``

plot3d(phi[2], x = 0 .. 5, y = 0 .. b)

 

NULL


 

Download tez-1.mw


 

restart

``

beta := 2.5; lambda := 0.1e-1; b := Pi; a := Pi; alpha := 1; y[1] := 1.5; y[2] := 1.5; x[1] := -1; x[2] := 1; Q[1] := 40; Q[2] := 35

2.5

 

0.1e-1

 

Pi

 

Pi

 

1

 

1.5

 

1.5

 

-1

 

1

 

40

 

35

(1)

NULL

NULL

v := (2*n-1)*Pi/(2*b)

n-1/2

(2)

Delta := exp(2*v*a)*(alpha*v+beta)*(1+lambda)-(1-lambda)*(alpha*v-beta)

1.01*exp(2*(n-1/2)*Pi)*(n+2.000000000)-.99*n+2.970000000

(3)

g[22] := ((alpha*v+beta)*((1+lambda)*exp(-v*abs(x-xi))+(-1+lambda)*exp(-v*(x+xi)))*exp(2*v*a)+(alpha*v-beta)*((1+lambda)*exp(-v*(x+xi))+(-1+lambda)*exp(-v*abs(x-xi))))/(2*v*Delta)

g[21] := ((alpha*v+beta)*exp(v*(2*a+xi))+(alpha*v-beta)*exp(-v*xi))*exp(-v*x)/(v*Delta)

NULL

u[2] := int(2*g[21]*Q[1]*Dirac(xi-x[1])*sin(n*Pi*y[1]/b)/b, xi = -a .. 0)+int(2*g[22]*Q[2]*Dirac(xi-x[2])*sin(n*Pi*y[2]/b)/b, xi = 0 .. infinity)

NULL

phi[2] := sum(u[2](x)*sin(v*y), n = 1 .. 30)

NULL

``

plot3d(phi[2], x = 0 .. 5, y = 0 .. b)

 

NULL


 

Download tez-1.mw

 

 

Hi,

I am working on an optimization problem, where i want to Maximize numerically a function (it is too complex to have a deriviatve) here a pseudo code:

Maximize(f(x,y,z), initialpoint = {x=1,y=1,z=1},iterationlimit = 9999);

Now i have a constraint on (x,y,z) where I want the maximum of another function be smaller than a threshold. Problem is, that the constraints function does not put it the corresponding x,y,z tupel and therefore the maximization regarding f does not come to a solution.

Maximize(f(x,y,z), {Maximize(g(x,y,z,f),{0<f<1})[1]<Thres},initialpoint = {x=1,y=1,z=1},iterationlimit = 9999);

Maybe you guys have an idea how to solve this.

Best

 

How to get same graph from maple with finite difference method for differential equations 

I m new here how to plot this i have seen related posts no where given clear idea for FDM method

plase help me to get the results Thank you

 

 

I am creating a Maple document mode worksheet in which I use the Units package. I was doing a calculation and I noticed a discrepancy when I repeated the calculation slightly more manually (but still expecting the same result). 

Here is a link to the worksheet: Units.mw

(Unfortunately, it is hit or miss for me when I try to use the option to show the contents of the worksheet here directly)

Here is a screenshot of the issue

All I am doing in the second calculation is doing some of the unit conversions myself. 

I came across this while solving a chemistry problem, and I know the answer in the book agrees with the second calculation. 

So the question is why doesn't the first calculation, which uses more of Maple's library to do the calculation, agree with the second calculation?

Hi,

So I've just installed the 2022 version of Maple and I wanted to make a new document.

But when I'm trying to make a variable with a subscript that includes a comma, I get wrong output.

For example; I want to make the variable Ab,c as 2D input and then it shows 'Ab,c' as output.

Why are those apostrophs showing up?

Thanks for the help

I’m on a Mac running Ventura 13.4.1 and Maple 2022. 

My plots now have axes and labels that are tiny. It seems like that possibly happened with one of the recent OS updates
Below is a graph of
with(plots): implicitplot3d(3x+2y+4z=2);

It renders the same if I use 
implicitplot3d(3x+2y+4z=2, axesfont=["TimesNewRoman", 12], labelfont = ["TimesNewRoman", 12]);

I can to change the 12 to much larger to see them. But I never used to have to do that before. Does anyone know if this is an OS issue? Is there a global setting I can change? 

 For the command LieAlgebras[RootSpaceDecomposition] I don't understand what the command return, I read the help and see the examples but still not understanding.

 

for example it returns:

RSD := RootSpaceDecomposition(CSA);

RSD := table([[-2, -1] = E31, [2, 1] = E13, [1, 2] = E23, [1, -1] = E12, [-1, 1] = E21, [-1, -2] = E32])

I don't understand what means [-2, -1] even they said that is the root but I know that a root is in h* so it must be only a number not a vector.

This isn't particularly complicated. Varying the span generates graphs that are smooth or have an obvious bug. Not sure why.

This also happens if you vary the C_I_CentLim or the C_Inventory. I created this example so it is clearly happening.
The graph gets a sharp jag down, then returns to normal.

Something weird with density of points? I played with it for hours and can't get it to go away.
=============================================
restart;
L := 0;
C_Inventory := 1500;
C_I_CentLim := 0.001;
C_I_StartLim := C_Inventory*C_I_CentLim;
C_InV := Matrix(1000, 3);  # This is so you  can see values created only bobble slightly where the graph has a giant deviation.
iCounter := 0;
P_ScLdt := proc(t) local x, k; global L, C_Inventory, iCounter, C_InV; x := 0; k := 0.08; iCounter := iCounter + 1; L := C_Inventory*C_I_CentLim; x := 4.8 + L/(1 + exp(-k*(t - 2060))) + 0.050; C_InV[iCounter, 1] := L; C_InV[iCounter, 2] := C_Inventory; C_InV[iCounter, 3] := x; if 0 < x then C_Inventory := C_Inventory - x; return x; else return 0; end if; end proc;

# Show results 1800-2100  Problem.
pP_ScLdt := plot('P_ScLdt'(x), x = 1800 .. 2100, linestyle = dash, color = red, thickness = 3, axis = [gridlines = [colour = black, majorlines = 2]], legend = "Pg");

# Re-initialize.
L := 0;
C_Inventory := 1500;
C_I_CentLim := 0.001;
C_I_StartLim := C_Inventory*C_I_CentLim;
C_InV := Matrix(1000, 3);
iCounter := 0;
# Show  that problem happens with a little shorter span
pP_ScLdt := plot('P_ScLdt'(x), x = 1850 .. 2100, linestyle = solid, color = black, thickness = 1, axis = [gridlines = [colour = black, majorlines = 2]], legend = "Pg");

# Re-initialize
L := 0;
C_Inventory := 1500;
C_I_CentLim := 0.001;
C_I_StartLim := C_Inventory*C_I_CentLim;
C_InV := Matrix(1000, 3);
iCounter := 0;
# Show problem goes away with a different interval 1900-2200
pP_ScLdt := plot('P_ScLdt'(x), x = 1900 .. 2200, linestyle = dash, color = blue, thickness = 3, axis = [gridlines = [colour = black, majorlines = 2]], legend = "Pg");

# Re-initialize
L := 0;
C_Inventory := 1500;
C_I_CentLim := 0.001;
C_I_StartLim := C_Inventory*C_I_CentLim;
C_InV := Matrix(1000, 3);
iCounter := 0;
# Enlarge the working interval of 1900-2200 to 1900-2300 and the problem returns, in a different place.
pP_ScLdt := plot('P_ScLdt'(x), x = 1900 .. 2300, linestyle = dash, color = blue, thickness = 3, axis = [gridlines = [colour = black, majorlines = 2]], legend = "Pg");


# Re-initialize
L := 0;
C_Inventory := 2000;
C_I_CentLim := 0.001;
C_I_StartLim := C_Inventory*C_I_CentLim;
C_InV := Matrix(1000, 3);
iCounter := 0;

# Enlarge the interval and it causes a larger set of jaggie deviations.
pP_ScLdt := plot('P_ScLdt'(x), x = 1800 .. 2800, linestyle = solid, color = blue, thickness = 1, axis = [gridlines = [colour = black, majorlines = 2]], legend = "Pg");

hello, mybe someone can help me to make an estimation parameter use data to diferential equation system. I had have made the maple sheet but there are some error, thank you very much. data_fitting_.mw

MAPLE.mw

restart

with(plots):

with(plottools):

with(DEtools):

N:=S(t)+C(t)+In(t);

S(t)+C(t)+In(t)

(1)

eqn1 := diff(S(t), t) = (b-mu*S(t)-beta*C(t)*S(t)+gamma*In(t)*S(t)-mu*C(t)-theta*S(t)), S(0) = ic1;

diff(S(t), t) = b-mu*S(t)-beta*C(t)*S(t)+gamma*In(t)*S(t)-mu*C(t)-theta*S(t), S(0) = ic1

(2)

eqn2:= diff(C(t),t) = rho*(beta*C(t)*S(t)+gamma*In(t)*S(t))-mu*C(t)-alpha*C(t),C(0) = ic2;

diff(C(t), t) = rho*(beta*C(t)*S(t)+gamma*In(t)*S(t))-mu*C(t)-alpha*C(t), C(0) = ic2

(3)

eqn3 := diff(In(t), t) = (1 - rho)*(beta*C(t)*S(t) + gamma*In(t)*S(t)) - mu*In(t) - pi*In(t) + alpha*C(t), In(0) = ic3;

diff(In(t), t) = (1-rho)*(beta*C(t)*S(t)+gamma*In(t)*S(t))-mu*In(t)-pi*In(t)+alpha*C(t), In(0) = ic3

(4)

b := 0.117852;

.117852

(5)

mu := 0.035378;

0.35378e-1

(6)

g := 0.11;

.11

(7)

rho := 0.05;

0.5e-1

(8)

 

beta := 0.02;

0.2e-1

(9)

theta := 0.066;

0.66e-1

(10)

pi:=0.9;

.9

(11)

 

alpha:=0.5;

.5

(12)

ic1 := 2390000;

2390000

(13)

ic2:=528;

528

(14)

ic3:=753;

753

(15)

dsol := dsolve([eqn1, eqn2, eqn3], numeric);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 28, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..65, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0, (64) = -1, (65) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.37606494238146785e-7, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..3, {(1) = 528.0, (2) = 753.0, (3) = 2390000.0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = .1, (2) = .1, (3) = .1}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[8]), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..3, {(1) = 528.0, (2) = 753.0, (3) = 2390000.0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 53201523.10308301, (2) = 1010833869.5310402, (3) = 1013317003.6716099}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = C(t), Y[2] = In(t), Y[3] = S(t)]`; YP[1] := 0.10e-2*Y[1]*Y[3]+0.288607832450766e-1*Y[2]*Y[3]-.535378*Y[1]; YP[2] := 0.190e-1*Y[1]*Y[3]+.548354881656456*Y[2]*Y[3]-.935378*Y[2]+.5*Y[1]; YP[3] := .117852-.101378*Y[3]-0.2e-1*Y[1]*Y[3]+.577215664901533*Y[2]*Y[3]-0.35378e-1*Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = C(t), Y[2] = In(t), Y[3] = S(t)]`; YP[1] := 0.10e-2*Y[1]*Y[3]+0.288607832450766e-1*Y[2]*Y[3]-.535378*Y[1]; YP[2] := 0.190e-1*Y[1]*Y[3]+.548354881656456*Y[2]*Y[3]-.935378*Y[2]+.5*Y[1]; YP[3] := .117852-.101378*Y[3]-0.2e-1*Y[1]*Y[3]+.577215664901533*Y[2]*Y[3]-0.35378e-1*Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 27 ) = (""), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0), ( 28 ) = (0)  ] ))  ] ); _y0 := Array(0..3, {(1) = 0., (2) = 528., (3) = 753.}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if elif type(_xin, `=`) and lhs(_xin) = "setdatacallback" then if not type(rhs(_xin), 'nonegint') then error "data callback must be a nonnegative integer (address)" end if; _dtbl[1][28] := rhs(_xin) else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, C(t), In(t), S(t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(16)

odeplot(dsol,[[t,In(t),color=red],[t,C(t),color=yellow],[t,S(t),color=blue]],t=0..100,view=[0..0.001,0..2000000]);

Warning, cannot evaluate the solution further right of .60900632e-5, probably a singularity

 

 

NULL


Download MAPLE.mw

Hi,

I think the title of the question speaks for itself.

But, to be more precise, here's an example with a real-valued function which, when it has two real numbers as input, gives the ratio of the first number to the second number, but if it has three real numbers as input, it returns the sum of the first number with the product of the next two numbers...

Thanks.

I found another big problem. 

In 2022, I get Error, (in SolveTools:-Polynomial) too many levels of recursion when using alias(seq(c[k] = _C||k, k = 0..10)); at the top of my code and the solution to the ode has c[2],c[3] etc.. as constants of integration.

This solution was given by Kitonum in this answer

I had this for years in the code (i.e. the alias) code.

In Maple 2022 the following gives the above exception error from odetest. I am using 2022, because in 2023 it just hangs on the same code.  

If I remove the alias code, no error shows. (solution is wrong, but that is different story). 

Also, If I remove the alias code, 2023 no long hangs!  

restart;

#kernelopts('assertlevel'=2):

alias(seq(c[k] = _C||k, k = 0..10));

c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7], c[8], c[9], c[10]

ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+12*y(x) = 80*sin(2*x);
sol:=y(x) = -10*exp(-1/2*2^(1/2)*arctan(sin(2*2^(1/2)*x)/cos(2*2^(1/2)*x)))*(c[3]*cos(2*2^(1/2)*x)+c[2]*sin(2*2^(1/2)*x))*((-1/10*exp(4*I*2^(1/2)*x)+1/10)*c[2]-1/10*I*c[3]*exp(4*I*2^(1/2)*x)-1/10*I*c[3])/((exp(4*I*2^(1/2)*x)-1)*c[2]+I*c[3]*exp(4*I*2^(1/2)*x)+I*c[3])*c[1]-10*I*exp(-1/2*2^(1/2)*arctan(sin(2*2^(1/2)*x)/cos(2*2^(1/2)*x)))*(c[3]*cos(2*2^(1/2)*x)+c[2]*sin(2*2^(1/2)*x))*(cos(2*x)-sin(2*x))*exp(2*I*2^(1/2)*x)*exp(2*I*2^(1/2)*x)^(-1/2*I*2^(1/2))/((exp(4*I*2^(1/2)*x)-1)*c[2]+I*c[3]*exp(4*I*2^(1/2)*x)+I*c[3]);

odetest(sol,ode);

diff(diff(y(x), x), x)+4*(diff(y(x), x))+12*y(x) = 80*sin(2*x)

y(x) = -10*exp(-(1/2)*2^(1/2)*arctan(sin(2*2^(1/2)*x)/cos(2*2^(1/2)*x)))*(c[3]*cos(2*2^(1/2)*x)+c[2]*sin(2*2^(1/2)*x))*((-(1/10)*exp((4*I)*2^(1/2)*x)+1/10)*c[2]-((1/10)*I)*c[3]*exp((4*I)*2^(1/2)*x)-((1/10)*I)*c[3])*c[1]/((exp((4*I)*2^(1/2)*x)-1)*c[2]+I*c[3]*exp((4*I)*2^(1/2)*x)+I*c[3])-(10*I)*exp(-(1/2)*2^(1/2)*arctan(sin(2*2^(1/2)*x)/cos(2*2^(1/2)*x)))*(c[3]*cos(2*2^(1/2)*x)+c[2]*sin(2*2^(1/2)*x))*(cos(2*x)-sin(2*x))*exp((2*I)*2^(1/2)*x)*(exp((2*I)*2^(1/2)*x))^(-((1/2)*I)*2^(1/2))/((exp((4*I)*2^(1/2)*x)-1)*c[2]+I*c[3]*exp((4*I)*2^(1/2)*x)+I*c[3])

Error, (in SolveTools:-Polynomial) too many levels of recursion

 

Download odetest_error_june_15_2023.mw

Why using the alias line above causes this error?  If you remove the alias line, you will see it completes with no error.

But it hangs in 2023. I am no longer using 2023 but went back to 2022 due to too many hangs in 2023. I wonder now if it because of this alias line I had there all the time.  I will remove now and see if this solves some of the hangs I had in 2023.

Anyone can shed some more light on what is going on?

Windows 10.

I can't figure how to obtain list of all modules inside my .mla file.

I can see all the modules using the command LibraryTools:-Browse("..../my_file.mla") then clicking EDIT then VIEW option at top right corner.  Member type is automatically set to MODULE in the lower left corner. So I can see the names of all the modules. And using the slider, I can scrol down. I see 73 modules listed.

But I want to do this in code. Not using GUI.

I tried the command

          L:=LibraryTools:-ShowContents(my_file.mla):

And this gives L of lenght 15805. Looking at each entry in the above list, it shows things I do not understand and I do not want. It has names in there which I do not know where these came from.

There does not seem to be an option in LibraryTools:-ShowContents() to only return the names of the modules inside .mla. At least I can't find such option.

reference Maple help page

Any idea how to do this in code? Not using the maplet? 

Maple 2022 on windows 10

ps. I know I can use the GUI and do EXTRACT to save the list to a file. But this is not good solution. I need the list of names of the modules be in a list so I can do this all in a function with no manual steps.

Does Maple have a command to list all names of all procs (local and exported) given a name of module?

There is a question/answer here which shows how to list all procs in module. But I only want the names.

The reason I am asking, I am trying to see if I can code 

     trace(moduleA:-proc1,
               moduleA:-proc2,
               moduleB:-proc3,....,
               moduleE:-proc1000,
               statements = false)

Before running my programming in order to turn tracing on. The problem is that there are 1,000's of proc's in dozens of modules so I need a way to obtain a sequence of the names all such procs automatically each time.

Once I figure how to do it for one module (say moduleA), I will apply this to the other modules I have and collect all names in one long sequence and see if this will work.

Any suggestion how to do this?  I now have all my modules inside one .mla file if it helps. They are all build ito this .mla from source tree of dozens of .mpl files.

Maple 2022 on windows 10

When adding option trace: inside a proc, Maple display trace of all assignments. I only want to see the --> enter  and <-- exit messages,.

I can't figure how to do that. Any suggestions? 

Maple 2022 on windows

restart;

A := module()
 export foo:=proc(n,m,k)   
   option trace:
   local r;

   r:=n:
   B:-boo(r);
 end proc:
end module:
B := module()
 export boo:=proc(n)
   option trace:
   local k;

   k:=n;
   RETURN();
 end proc:
end module:

#kernelopts(tracelineinfo=2);
#printlevel := 10:
kernelopts(traceincidentalassign=false):
kernelopts(tracesplitmulassign=false):
kernelopts(traceshowspecassign=false):
kernelopts(traceincidentalassign=false):
kernelopts(tracesplitmulassign=false):
kernelopts(traceshowspecassign=false):
kernelopts(tracelineinfo=0):
A:-foo(1,2,diff(y(x),x)=sin(x))

{--> enter foo, args = 1, 2, diff(y(x), x) = sin(x)

1

{--> enter boo, args = 1

1

<-- exit boo (now in foo) = }

<-- exit foo (now at top level) = }

 

Download trace_june_14_2023.mw

First 8 9 10 11 12 13 14 Last Page 10 of 39