Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

I'm trying to solve a system of two differential equations numerically
 

restart

eq1 := diff(A(t), t) = c1*(A__T-A(t))-c2*A(t)*R(t)

diff(A(t), t) = c1*(A__T-A(t))-c2*A(t)*R(t)

(1)

NULL

eq2 := diff(R(t), t) = (c3+c1)*(R__T-R(t))-c2*Ab(t)*R(t)

diff(R(t), t) = (c3+c1)*(R__T-R(t))-c2*Ab(t)*R(t)

(2)
 

 

sys1 := [eq1, eq2]

[diff(A(t), t) = c1*(A__T-A(t))-c2*A(t)*R(t), diff(R(t), t) = (c3+c1)*(R__T-R(t))-c2*Ab(t)*R(t)]

(3)

A__T := 100

100

(4)

R__T := 100

100

(5)

c2 := 1000

1000

(6)

c1 := 0.2e-4

0.2e-4

(7)

c3 := 2000

2000

(8)

``

InitCond := A(0) = A__T, R(0) = R__T

A(0) = 100, R(0) = 100

(9)

nsol := dsolve(sys1, InitCond, type = numeric)

Error, (in dsolve/numeric/type_check) insufficient initial/boundary value information for procedure defined problem

 

 

It seems to me this problem should be solvable for the initial conditions given.  Am I entering them wrong somehow?

 

NULL

Download dsolve_problem.mw

The modified Liouville equation

How to solve this pde for a general solution ?

The general solution in this form exist.

restart;

with(PDEtools): declare(u(x,t)); U:=diff_table(u(x,t));
PDE1:=U[t,t]=a^2*U[x,x]+b*exp(beta*U[]);
Sol11:=u(x,t)=1/beta*ln(2*(B^2-a^2*A^2)/(b*beta*(A*x+B*t+C)^2));
Sol12:=S->u(x,t)=1/beta*ln(8*a^2*C/(b*beta))
-2/beta*ln(S*(x+A)^2-S*a^2*(t+B)^2+S*C);
Test11:=pdetest(Sol11,PDE1);
Test12:=pdetest(Sol12(1),PDE1);
Test13:=pdetest(Sol12(-1),PDE1);

u(x, t)*`will now be displayed as`*u

 

table( [(  ) = u(x, t) ] )

 

diff(diff(u(x, t), t), t) = a^2*(diff(diff(u(x, t), x), x))+b*exp(beta*u(x, t))

 

u(x, t) = ln(2*(-A^2*a^2+B^2)/(b*beta*(A*x+B*t+C)^2))/beta

 

proc (S) options operator, arrow; u(x, t) = ln(8*a^2*C/(b*beta))/beta-2*ln(S*(x+A)^2-S*a^2*(t+B)^2+S*C)/beta end proc

 

0

 

0

 

0

(1)

The Soll11 can be plotted with a Explore plot in this form of soll11 with th eparameters , but suppose i try to get the general solution in Maple ?

infolevel[pdsolve] := 3

pdsolve(PDE1, generalsolution)

ans := pdsolve(PDE1);

What solvin gstrategy to follow ? : the pde is a non-linear wave eqation  with a exponentiel sourceterm
It seems that the pde can reduced to a ode? :

 

with(PDEtools):
declare(u(x,t));

# Stap 1: Definieer de PDE
PDE := diff(u(x,t), t,t) = a^2 * diff(u(x,t), x,x) + b * exp(beta * u(x,t));

# Stap 2: Definieer de transformatie naar karakteristieke variabelen
# Nieuw: x en t uitgedrukt in ξ en η
tr := {
    x = (xi + eta)/2,
    t = (eta - xi)/(2*a)
};

# Pas de transformatie toe op de PDE
simplified_PDE := dchange(tr, PDE, [xi, eta], params = [a, b, beta], simplify);

# Stap 3: Definieer de algemene oplossing
solution := u(x,t) = (1/beta) * ln(
    (-8*a^2/(b*beta)) *
    diff(_F1(x - a*t), x) * diff(_F2(x + a*t), x) /
    (_F1(x - a*t) + _F2(x + a*t))^2
);

# Stap 4: Controleer de oplossing (optioneel)
pdetest(solution, PDE);  # Moet 0 teruggeven als correct

u(x, t)*`will now be displayed as`*u

 

diff(diff(u(x, t), t), t) = a^2*(diff(diff(u(x, t), x), x))+b*exp(beta*u(x, t))

 

{t = (1/2)*(eta-xi)/a, x = (1/2)*xi+(1/2)*eta}

 

a^2*(diff(diff(u(xi, eta), xi), xi)-2*(diff(diff(u(xi, eta), eta), xi))+diff(diff(u(xi, eta), eta), eta)) = a^2*(diff(diff(u(xi, eta), xi), xi))+2*a^2*(diff(diff(u(xi, eta), eta), xi))+a^2*(diff(diff(u(xi, eta), eta), eta))+b*exp(beta*u(xi, eta))

 

u(x, t) = ln(-8*a^2*(D(_F1))(-a*t+x)*(D(_F2))(a*t+x)/(b*beta*(_F1(-a*t+x)+_F2(a*t+x))^2))/beta

 

0

(2)

missing some steps here : solution u  without  the pde reduced ?
there is a ode ?

# Definieer de ODE # vorige stappen ontbreken van de reduktie
ode := (v^2 - a^2) * diff(f(xi), xi, xi) = b * exp(beta * f(xi));

# Algemene oplossing zoeken
sol := dsolve(ode, f(xi));

(-a^2+v^2)*(diff(diff(f(xi), xi), xi)) = b*exp(beta*f(xi))

 

f(xi) = ln((1/2)*c__1*(tan((1/2)*(-c__1*a^2*beta+c__1*beta*v^2)^(1/2)*(c__2+xi)/(a^2-v^2))^2+1)/b)/beta

(3)

 

, ,

Question : how do i arrive on Soll11   in Maple  ?

 

Download liouville_reduced_2-2-2025_mprimes_vraag.mw

I read the install.html that is installed with Maple2024 and the instructions to increase stack and heap limits are definately outdated.

None of the files they list there for Linux even exists after the Maple2024 installation.

So where exactly can I set the stack and heap size limits on Linux,  as Maple give me stack and heap errors.

It been a while i try to figure out How they find dispersion parameter and phase shift i figure out how find dispersion in some of pde but some of them is not give me even dispresion parameter i don't know they wrong or i am , but for finding phase shift there is three cenarios, when we change pde to bilinear form we have linear term in bilinear form so after substitute in linear term f bilinear form we can get dispersion parameter which is a parameter beside (t) also we can generalized for all of solution by changing the number of parameter as mention in the paper, but for phase shift parameter i don't know how find it i must substitute our solution in linear term or whole  bilinear form of in first pde linear term i try all  but i don't know what is i did mistake the paper say put in pde but i think he mention the the bilinear form i did all part for one soliton is w[1] for 2soliton is w[2] file i just want find parameter a[12] in paper for 2-soliton eq(19)  then i will find for other just i need to find one of them, thanks for any help  in this topic .

 

I am trying to show that the eigenvalues of a matrix are described by my proposed formula. I managed to show this numerically, but I would like to show this symbolically. There are two issues here - the orders of the two lists are different, and the forms are different (sums of complex exponentials vs RootOfs). Any suggestions?

restart;

with(LinearAlgebra): with(GraphTheory): with(plots):

L:=9;

9

Generate a matrix and its eigenvalues

C := AdjacencyMatrix(CycleGraph(L, directed)):
Id := IdentityMatrix(L):
A := KroneckerProduct(C, Id) + KroneckerProduct(Id, C) + KroneckerProduct(C, C):
evs := Eigenvalues(A, output = list):
plotevs := complexplot(evs, style = point, color = blue, scaling = constrained):

My guess as to their values

evstheory:=[seq(seq(exp((2*Pi)*I*k/L) + exp((2*Pi)*I*m/L) + exp((2*Pi)*I*(m + k)/L), k = 0 .. L - 1), m = 0 .. L - 1)]:
plotevstheory:=complexplot(evstheory, style = point, color = red, scaling = constrained):

They look to be the same

display(Array([plotevs,plotevstheory]));

 

 

 

 

 

Even showing they are the same numerically is nontrivial because the sorting is not consistent

fnormal(sort(evalf(evs))-sort(evalf(evstheory)));

[0., 0., 0., 0.*I, 0.*I, 0.*I, 0.*I, 0.+0.*I, 0.+0.*I, 0.-1.285575219*I, 0.-1.285575219*I, 0.-.9216049846*I, 0.-.9216049846*I, 0.-1.732050808*I, 0.-1.732050808*I, 0.+1.732050808*I, 0.+1.732050808*I, 0.+.9216049846*I, 0.+.9216049846*I, 0.+1.285575219*I, 0.+1.285575219*I, 0.+0.*I, 0.+0.*I, 0.-0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+.6840402864*I, 0.+.6840402864*I, 0.-.6840402858*I, 0.-.6840402858*I, 0.+0.*I, 0.+0.*I, 0.-3.701666314*I, 0.-3.701666314*I, 0.-.6840402857*I, 0.-.6840402857*I, 0.-.6840402863*I, 0.-.6840402863*I, 0.+.6840402868*I, 0.+.6840402868*I, 0.+.6840402862*I, 0.+.6840402862*I, -0.+3.701666314*I, -0.+3.701666314*I, 0.-4.623271298*I, 0.-.6840402860*I, 0.-.6840402860*I, 0.+.6840402865*I, 0.+.6840402865*I, -0.+4.623271298*I, 0.-4.987241533*I, 0.-4.987241533*I, 0.-.6840402866*I, 0.-.6840402866*I, 0.-1.732050808*I, 0.-1.732050808*I, 0.+1.732050808*I, 0.+1.732050808*I, 0.+.6840402863*I, 0.+.6840402863*I, -0.+4.987241532*I, -0.+4.987241532*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.-4.540765944*I, 0.-0.*I, 0.-0.*I, 0.-0.*I, 0.-0.*I, -0.+4.540765944*I, 0.-1.285575219*I, 0.-1.285575219*I, 0.-1.285575219*I, 0.-1.285575219*I, -0.+2.571150438*I, -0.+2.571150438*I]

This succeeds, so they are the same

fnormal(sort(evalf[20](evs),key=evalf)-sort(evalf[20](evstheory),key=evalf));

[0., 0., 0., 0.*I, 0.*I, 0.*I, 0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.+0.*I, 0.-0.*I, 0.-0.*I, 0.+0.*I, 0.+0.*I]

What about symbolically? [Edit - only part of output shown]

ans1:=simplify(sort(evs,key=evalf)-sort(evstheory,key=evalf));

NULL

Download verification.mw

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

pde := diff(u(x, y, z, t), `$`(t, 2))+diff(u(x, y, z, t), `$`(x, 2))-(diff(u(x, y, z, t)^2, `$`(x, 2)))-(diff(u(x, y, z, t), `$`(x, 4)))+diff(diff(u(x, y, z, t), y)+diff(u(x, y, z, t), z)+diff(u(x, y, z, t), t), x)+2*(diff(u(x, y, z, t), y, t))+diff(u(x, y, z, t), `$`(y, 2)) = 0

diff(diff(u(x, y, z, t), t), t)+diff(diff(u(x, y, z, t), x), x)-2*(diff(u(x, y, z, t), x))^2-2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))-(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))+diff(diff(u(x, y, z, t), x), y)+diff(diff(u(x, y, z, t), x), z)+diff(diff(u(x, y, z, t), t), x)+2*(diff(diff(u(x, y, z, t), t), y))+diff(diff(u(x, y, z, t), y), y) = 0

(3)

declare(v(t))

v(t)*`will now be displayed as`*v

(4)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(5)

Q := u(x, y, z, t) = 6*(diff(ln(f(x, y, z, t)), `$`(x, 2)))

LL := diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x)-(diff(diff(diff(f(x, y, z, t), x), x), x))-(diff(diff(diff(f(x, y, z, t), t), t), x))-(diff(diff(diff(f(x, y, z, t), t), x), x))-2*(diff(diff(diff(f(x, y, z, t), t), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), z))-(diff(diff(diff(f(x, y, z, t), x), y), y)) = 0

diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x)-(diff(diff(diff(f(x, y, z, t), x), x), x))-(diff(diff(diff(f(x, y, z, t), t), t), x))-(diff(diff(diff(f(x, y, z, t), t), x), x))-2*(diff(diff(diff(f(x, y, z, t), t), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), y))-(diff(diff(diff(f(x, y, z, t), x), x), z))-(diff(diff(diff(f(x, y, z, t), x), y), y)) = 0

(6)

S22 := f(x, y, z, t) = 1+exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z)+exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*sqrt(4*k[2]^4-3*k[2]^2-4*k[2]*s[2]))*t)+B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*sqrt(4*k[2]^4-3*k[2]^2-4*k[2]*s[2]))*t)

f(x, y, z, t) = 1+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)

(7)

NULL

R11 := eval(LL, S22)

k[1]^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*(k[1]+k[2])^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))^2*k[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*(k[1]+k[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-2*(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*s[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(s[1]+s[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]*l[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]*l[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])*(l[1]+l[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t) = 0

(8)

L4 := collect(%, [x, y, t], 'distributed')

k[1]^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+B[1]*(k[1]+k[2])^5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^3*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))^2*k[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))^2*(k[1]+k[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*k[1]*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-2*(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*k[2]*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-2*B[1]*(-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*(k[1]+k[2])*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*l[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*l[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(l[1]+l[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]^2*s[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])^2*(s[1]+s[2])*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[1]*l[1]^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z)-k[2]*l[2]^2*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-B[1]*(k[1]+k[2])*(l[1]+l[2])^2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t) = 0

(9)

indets(%)

{t, x, y, z, B[1], k[1], k[2], l[1], l[2], s[1], s[2], (4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2), (4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2), exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t), exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z), exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)}

(10)

eq2 := algsubs(exp((-(1/2)*k[1]-l[1]+(1/2)*sqrt(4*k[1]^4-3*k[1]^2-4*k[1]*s[1]))*t+k[1]*x+l[1]*y+s[1]*z) = X, L4)

-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])*k[2]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^2*s[1]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^2*s[2]+5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^4*k[2]+10*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^3*k[2]^2+10*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*k[2]^3+5*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]^4-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*s[1]-exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^2*s[2]-(9/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[2]^2*k[1]-(9/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[1]^2*k[2]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])*k[1]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])*k[2]-(1/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])*k[1]+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]^5+exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[2]^5-(3/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[1]^3-(3/4)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*k[2]^3-(1/4)*k[1]*X*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])-(1/4)*k[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])-k[1]^2*s[1]*X-(3/4)*k[2]^3*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+k[2]^5*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)-k[2]^2*s[2]*exp(k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)+k[1]^5*X-(3/4)*k[1]^3*X-2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]*s[1]-2*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*B[1]*k[1]*k[2]*s[2]-(1/2)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2)*k[1]-(1/2)*B[1]*exp((-(1/2)*k[1]-l[1]+(1/2)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2))*t+k[1]*x+l[1]*y+s[1]*z+k[2]*x+l[2]*y+s[2]*z+(-(1/2)*k[2]-l[2]+(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2))*t)*(4*k[1]^4-3*k[1]^2-4*k[1]*s[1])^(1/2)*(4*k[2]^4-3*k[2]^2-4*k[2]*s[2])^(1/2)*k[2] = 0

(11)

eq3 := simplify(eq2)

-(1/2)*(k[1]+k[2])*B[1]*((k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-8*k[1]*k[2]^3-12*k[2]^2*k[1]^2+(-8*k[1]^3+3*k[1]+2*s[1])*k[2]+2*s[2]*k[1])*exp((1/2)*t*(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2])) = 0

(12)

indets(eq3)

{t, x, y, z, B[1], k[1], k[2], l[1], l[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2), exp((1/2)*t*(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2]))}

(13)

eq4 := algsubs(exp((1/2)*t*sqrt(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))+(1/2)*t*sqrt(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))+(1/2)*(-k[1]-k[2]-2*l[1]-2*l[2])*t+k[1]*x+k[2]*x+l[1]*y+l[2]*y+z*(s[1]+s[2])) = V, eq3)

-(1/2)*(k[1]+k[2])*B[1]*(-8*k[2]*k[1]^3-12*k[2]^2*k[1]^2-8*k[1]*k[2]^3+(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+3*k[1]*k[2]+2*s[2]*k[1]+2*s[1]*k[2])*V = 0

(14)

indets(eq4)

{V, B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(15)

eqs := {coeffs(collect(numer(normal(lhs(eq4))), {V}, 'distributed'), {V})}; nops(%); indets(eqs)

{-(k[1]+k[2])*B[1]*(-8*k[2]*k[1]^3-12*k[2]^2*k[1]^2-8*k[1]*k[2]^3+(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+3*k[1]*k[2]+2*s[2]*k[1]+2*s[1]*k[2])}

 

1

 

{B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(16)

vars := indets(eqs); ans := solve(eqs, vars)

{B[1], k[1], k[2], s[1], s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

 

Warning, solving for expressions other than names or functions is not recommended.

 

{B[1] = B[1], k[1] = -k[2], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}, {B[1] = 0, k[1] = k[1], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}, {B[1] = B[1], k[1] = k[1], k[2] = k[2], s[1] = (1/2)*(8*k[2]*k[1]^3+12*k[2]^2*k[1]^2+8*k[1]*k[2]^3-3*k[1]*k[2]-2*s[2]*k[1]-(k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))/k[2], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(17)

case2 := ans[1]

{B[1] = B[1], k[1] = -k[2], k[2] = k[2], s[1] = s[1], s[2] = s[2], (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2) = (k[1]*(4*k[1]^3-3*k[1]-4*s[1]))^(1/2), (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2) = (k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)}

(18)

FF := subs(case2, S22)

NULL

F11 := eval(Q, FF)

pdetest(F11, pde)

-6*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(B[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+56*k[2]^4*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-6*k[2]^2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+B[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-24*B[1]*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+4*k[2]*s[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-4*k[2]*s[2]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*k[2]*s[2]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-224*k[2]^4*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-4*k[2]*s[2]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*k[2]*s[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+6*B[1]*k[2]^2*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-8*B[1]*k[2]^4*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+3*B[1]*k[2]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-28*B[1]*k[2]^4*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-28*B[1]*k[2]^4*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+24*k[2]^2*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+16*B[1]*k[2]*s[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-16*B[1]*k[2]*s[2]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+8*B[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-4*B[1]*k[2]*s[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]*k[2]*s[2]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*exp(-t*k[2]+2*t*l[1]+4*k[2]*x+2*l[2]*y+2*s[2]*z+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-2*B[1]*k[2]*s[1]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*B[1]*k[2]*s[2]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*k[2]*s[1]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[2]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*k[2]*s[1]*B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[2]*B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*k[2]*s[2]*B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*k[2]*s[1]*B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-4*B[1]*k[2]*s[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*B[1]*k[2]*s[2]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-2*B[1]*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-2*B[1]*k[2]*s[2]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+32*B[1]*k[2]^4*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+2*k[2]*s[2]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-2*k[2]*s[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[1]*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+3*k[2]^2*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+3*k[2]^2*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-28*k[2]^4*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-28*k[2]^4*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+3*B[1]*k[2]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-3*B[1]*k[2]^2*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]*k[2]^4*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+2*B[1]*k[2]*s[1]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-2*B[1]*k[2]*s[2]*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+B[1]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+B[1]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-B[1]*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-B[1]*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+4*B[1]*k[2]^4*exp(-(1/2)*t*k[2]+2*t*l[1]+t*l[2]+3*k[2]*x+l[2]*y+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+4*B[1]^2*k[2]^4*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+16*k[2]*s[2]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-16*k[2]*s[1]*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-8*exp(t*l[1]+t*l[2]+2*k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)-6*k[2]^2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+56*k[2]^4*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+6*B[1]*k[2]^2*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-8*B[1]*k[2]^4*exp(t*k[2]+2*t*l[2]+2*l[1]*y+2*s[1]*z+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-3*B[1]*k[2]^2*exp((1/2)*t*k[2]+t*l[1]+2*t*l[2]+k[2]*x+l[1]*y+s[1]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))-3*B[1]^2*k[2]^2*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))-3*B[1]^2*k[2]^2*exp(t*l[1]+3*k[2]*x+l[1]*y+2*l[2]*y+s[1]*z+2*s[2]*z-(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+4*B[1]^2*k[2]^4*exp(t*l[2]+k[2]*x+2*l[1]*y+l[2]*y+2*s[1]*z+s[2]*z+(1/2)*t*k[2]+t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2)))/(B[1]*exp(k[2]*x+l[1]*y+l[2]*y+s[1]*z+s[2]*z+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2)+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+exp(t*l[1]+2*k[2]*x+l[2]*y+s[2]*z-(1/2)*t*k[2]+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]-4*s[2]))^(1/2))+exp(t*l[2]+l[1]*y+s[1]*z+(1/2)*t*k[2]+(1/2)*t*(k[2]*(4*k[2]^3-3*k[2]+4*s[1]))^(1/2))+exp(t*l[1]+t*l[2]+x*k[2]))^4

(19)
 

NULL

Download hard_parameters.mw

I've been evaluating Grid but I found some problems with SQLite DB when not using numnodes.

So I am now using numnodes option to setup explicitly number of nodes to use with Grid.

But the problem is now print() do not show on the screen from node code. So hard to debug. So I changed code to send debug messages to print files.

But now I find that the files do even get created when using numnodes. 

When removing numnodes option, the text file gets created. 

I am using FileTools:-Text:-WriteString() and FileTools:-Text:-Close() in the node code.
I also tried using fopen(). Both do not work. 

Same code works OK if I do not use numnodes. 

Any idea why the file do not get created when using numnodes? Worksheet to produce this is below.

I use C:\\tmp folder for testing. Feel free to change this. When I run the code and look in the folder, I do not see the text file there when using numnodes. 

It is possible the file is created but saved somewhere else on the system even though the full file name is given?

It seems to me now that when using numnodes option, there are some things that work and some things that do not work. I do not know if this is by design or a bug. Any one knows?

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1843 and is the same as the version installed in this computer, created 2025, January 25, 22:5 hours Pacific Time.`

Why task running on node do not create text file?

 

restart;

currentdir("C:\\TMP"): #change as needed

foo:=proc(n::integer)   
   local file_name::string;
   currentdir("C:\\TMP"): #change as needed
   file_name:=cat(currentdir(),"\\",n,"_file.txt");
   FileTools:-Text:-WriteString(file_name,cat("processing at node =",n));
   FileTools:-Text:-Close(file_name);
end proc:

Grid:-Set(foo):
Grid:-Setup("local",numnodes=1);
Grid:-Run(0,foo,[0]):
Grid:-Wait();

#No file "0_file.txt" is created in my C:\\TMP\ folder

 

 

 

Another version using fopen instead of FileTools. This also do not work

 

restart;

currentdir("C:\\TMP"): #change as needed

foo:=proc(n::integer)   
   local file_name::string, fileID;
   currentdir("C:\\TMP"): #change as needed
   file_name:=cat(currentdir(),"\\",n,"_file.txt");
   try
        fileID := fopen(file_name,WRITE);
    catch:
        error StringTools:-FormatMessage(lastexception[2..-1]);
    end try;   

   fprintf(fileID,"%s",cat("processing at node =",n));
   fclose(fileID);        
end proc:

Grid:-Set(foo):
Grid:-Setup("local",numnodes=1);
Grid:-Run(0,foo,[0]):
Grid:-Wait();


Download grid_question_jan_29_2025.mw

To see the file 0_file.txt get created in the folder, simply remove the numnodes option.

Dear all,

I'm a new maple user trying to solve a single PDE in maple using finite volume.

For simplicity I'm using three volumes. When I'm trying to apply a simple flux limiter, up-wind scheme, (relation between the wall and the node values u[j+0.5](t)=u[j](t)), I'm solver works well and produces accurate results.

However, when I try to a more complicated flux limiter, the solver doesn't initialize and I'm getting an error:
"Error, (in dsolve/numeric/DAE/make_proc) specified dependent variables [u[0](t), u[.5](t), u[1](t), u[1.5](t), u[2](t), u[2.5](t), u[3](t), u[3.5](t), u[4](t)] do not agree with input system {u[0], u[1], u[2], u[3], u[4], u[1/2], u[1.5], u[2.5], u[3.5]}, differences: {u[1/2]}, {u[.5]}".

I would greatly appreciate it if somebody helps me on in this issue.

error.mw

in a lot of my equation i have such problem and really i don't know how fix this also i try to put : in end and sometime is work and i keep contionues  but sometime not there is any way for solve this problem?

limit.mw

i don't know how generate this series and when i have a lot series which i can't make them automatically i don't know how write and replacing some structure like mu is zero or 1 as shown in picture can any one give me a hand?

both of them are same with little different

 

i need find parameter in explicite way without Rootof() so i need use code of explicite but i get error but when i use all parameter without explicite all parameter come out so why i get this error?

 
 

 

  (13)

vars := indets(eqs); ans := solve(eqs, {p, q, a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], k[1], k[2], k[3], m[1], m[2], m[3]}, explicit)

{p, q, a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], k[1], k[2], k[3], m[1], m[2], m[3]}

 

Error, (in Utilities:-RecognizeCyclotomic) numeric exception: division by zero

 
 

``

zero.mw

It's 2024 and this is still something that doesn't exist? I'd just like to swap the Enter/Shfit+Enter behaviors since I find myself writing a lot of multi-line and custom procs and boy howdy it'd be nice if I could make Maple behave at least the littllest bit like, I dunno, every other product I own and use.

Just around a month after the first release I am glad to announce the second public release of this project.

Changes from last release:

  • added angled cuts to beam ends
  • fixed bug for bolt connections with thick steel plates
  • rewrite check if fasteners are placed within beams
  • removed some obsolete procedures in NODEFunctions
  • minor changes in XML file headers

For more information see https://github.com/Anthrazit68/NODEMaple.

i found solution of PDE but there is some different from my solution and paper solution so there is must be a mistake becuase he solved by maple too he mentioned in the paper i try to figure out but i can't see any mistake from my solution can anyone watch where i did mistake, i change some letter in finding parameter but they are same like p=k&h=A&n=p&w=n

here is paper solution 

parameter-different.mw

I was trying to look for an easy way to plot the locations of the distance and midpoint on a graph. I found how to get the distance and midpoint functions but plotting them is hard.

Thanks in advance.

 

with(Student:-Precalculus)

with(Plot)

a := [1, 3]

b := [5, 6]

Distance(a, b)

5

(1)

Midpoint(a, b)

[3, 9/2]

(2)

Line(a, b)

y = (3/4)*x+9/4, 3/4, 9/4, -3

(3)

Line(a, b, output = plot)

 
 

 

Download How-to-plot-distance-midpoint.mw

First 9 10 11 12 13 14 15 Last Page 11 of 42