Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Why does the following statement not evaluate, or better yet, how can I make it do so?

 

A:=value(floor(p)) assuming p>0,p<1,p::real;

or

A:=simplify(floor(p)) assuming p>0,p<1,p::real;

or any one of a lot of different attempts along the above lines, all of which seem (to me) that they should yield

A:=0

rather than

A:=floor(p)

which is what I get.

Thanks in advance

I have theoretically 3(could eventually be more) layers with an incident wave with a wave equation for that wave.

It refracts into the 2nd layer from the first and now has a 2nd wave equation, then from the 2nd into the 3rd layer with a 3rd wave equation.

All the wave equations are of the form, Psi(z) = A_1psi_1(z) + B_1psi_2(z); this is just a general solution where psi_1&2 are linearly independant solutions that make up the general equation above and A_1 and B_1 are constant coefficients that would be A_2,B_2 and A_3,B_3 for the 2nd and 3rd layers respectively.

Transfer matrix method gives A_1,B_1 in terms of A_2,B_2(as it transfers from layer 1 to 2 they equate under boundary conditions so you can solve the simultaneous equations for results). You create a matrix of these results and multiply it with the respective matrix of the 2nd layer to 3rd layer to give you the overall transfer matrix from one side of the system to the other.

I think something to do with transfer function but not sure how to use it or set up the problem. 

Thanks in advance for any pointers.

 

f(f(z,a),b) = f(z, a + b) 

i googled this axiom is diff(x(t),t) = xi(f);

then i think 

diff(x(t),t$2) = xi(f);

is it f(f(f(z,a),b),c) = f(z, a + b+c) ?

then think again

whether  f(f(f(z,a),b),c) + f(f(z,a),b) = f(z, a + b+c)  is diff(x(t),t$2)+diff(x(t),t)= xi(f);

however do not know how to construct right hand side  f(z, a + b+c), this is my guess

any books teaching this?

 

i think that if any matrix group be created from  f(f(f(z,a),b),c) + f(f(z,a),b)

that can help to convert to differential equations

 

hope that there is a solvable group which can represent solvable differential equation or differential system

 

if xi is Infinitesimal in maple,

how to find Infinitesimal from f(f(z,a),b) = f(z, a + b) ?

got error when draw root locus

and would like to know how to set feasibility tolerance, less than 0.1 is also ok

 

with(DynamicSystems):

x11 := [1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11 := [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11 := [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.59, 5.74, 5.49, 5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79];

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);

c1 := Diff(z1(t),t) = k8*x1(t)+ k9*y1(t)+ k10*z1(t)+k12*u1(t);

d1 := Diff(u1(t),t) = 0;

ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[27];

sol:=dsolve({a1,b1,c1,d1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);

X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));

tim := [seq(n, n=1..27)];

N:=nops(tim):

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);

 add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)

 end proc;

ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.001,.002,.003);

result1 := Optimization:-Minimize(ans,initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.001,.002,.003]);

x11 := [1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11 := [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11 := [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.59, 5.74, 5.49, 5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79];

k1 := result1[2][1];

k2 := result1[2][2];

k3 := result1[2][3];

k4 := result1[2][4];

k5 := result1[2][5];

k6 := result1[2][6];

k7 := result1[2][7];

k8 := result1[2][8];

k9 := result1[2][9];

k10 := result1[2][10];

k11 := result1[2][11];

k12 := result1[2][12];

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);

c1 := Diff(z1(t),t) = k8*x1(t)+ k9*y1(t)+ k10*z1(t)+k12*u1(t);

d1 := Diff(u1(t),t) = 0;

diff_eq := [a1, b1, c1, d1];

sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t), u1(t)], [x1(t), y1(t), z1(t), u1(t)]);

sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t)], [x1(t), y1(t), z1(t), u1(t)]);

ResponsePlot(sys6, Step(), parameters = params);

RootLocusPlot(sys6);

 

> sys6 := DiffEquation(diff_eq, [], [x1(t), y1(t), z1(t), u1(t)]);

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

> sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t), u1(t)], [x1(t), y1(t), z1(t), u1(t)]); sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t)], [x1(t), y1(t), z1(t), u1(t)]);

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

> ResponsePlot(sys6, Step(), parameters = params); RootLocusPlot(sys6);

Error, invalid input: DynamicSystems:-ResponsePlot expects value for keyword parameter parameters to be of type ({set, list})(name = complexcons), but received params

Error, (in Verify:-CommonExports) system object is not a module

 

Bonjour,

 

 

Je veux savoir comment augmenter la mémoire du maple sachant que j'ai un calculateur puissant (4 CPU de 2G pour chacun+2 RAM de 146 G pour chacune).

 

Merci d'avance,

Gérard.

Hello,

I was wondering if I can call Matlab R2012b with maple 14 on my macos 10.7.5.

When I try to do this:

> Matlab[setvar]("x", 3.14);

I get this:


Error, (in Matlab:-setvar) there was a problem finding or loading matlink.so. Refer to ?Matlab,setup for help configuring your system to work with the Matlab-link.

I read that I may have to change a script. Where are those scripts located?

Regards,

expect to export a series of graphs, but no diagram,

 

then i debug to export one diagram, it is success, why in this case not export

https://drive.google.com/file/d/0B2D69u2pweEvcDZVZ0tsRTc2dTg/edit?usp=sharing

restart;
with(combinat):
list1 := permute([a, b, a, b, a, b], 3);
list1a := subs(b=1,subs(a=0, list1));
n := 3;
list1a := permute([seq(seq(k,k=0..1),k2=1..n)], n);
list2 := permute([a, b, c, d, e, f, g, h, a, b, c, d, e, f, g, h, a, b, c, d, e, f, g, h], 3);
list3 := subs(h=18,subs(g=17,subs(f=16,subs(e=15,subs(d=14,subs(c=13,subs(b=12,subs(a=11,list2))))))));
list3 := permute([seq(seq(k,k=11..18),k2=1..3)], 3);
Iter:= iterstructs(Permutation([seq(seq(k,k=11..(10+nops(list1a))),k2=1..3)]), size=3):
list3b := [];
while not Iter[finished] do
p:= Iter[nextvalue]();
list3b := [p, op(list3b)];
end do:
list5 := Matrix(nops(list1a)*nops(list3), 1);
count := 1;
for n from 1 to nops(list3) do
temp1 := subs(1=list1a[1],list3[n]);
for k from 11 to nops(list1a)+10 do
temp1 := subs(k=list1a[k-10],temp1);
od;
list5[count] := temp1;
count := count + 1;
od;
Lfh := proc(numoflevel, hx, fx, varx)
if numoflevel = 1 then
hello := 0;
for kk from 1 to nops(var) do
hello := hello + diff(hx[kk], varx[kk])*fx[kk];
od;
return hello;
else
hello := 0;
for kk from 1 to nops(var) do
hello := hello + diff(Lfh(numoflevel-1, hx, fx, varx), varx[kk])*fx[kk];
od;
return hello;
end if;
end proc:
CheckRelativeRankZero := proc(h1, f1, g1,variables1,Count)
IsFinish := 0;
Result := 0;
for ii from 1 to 8 do
if IsFinish = 0 then
Lf2h := Lfh(ii,h1,f1,variables1);
Print(“Lf2h=”);
Print(Lf2h);
Lgf2h := Lfh(1,[seq(Lf2h,n=1..nops(variables1))],g1,variables1);
if Lgf2h = 0 then
print(“Lgf2h = 0”)
print(f1);
print(Lf2h);
print("find at ", ii);
IsFinish := 1;
Result :=Lf2h;
end if;
end if;
od;
return Result;
end proc:
IsZeroMatrix := proc(h1)
Iszero := 1;
for ii from 1 to 3 do
for jj from 1 to 3 do
if h1[ii][jj] <> 0 then
Iszero := 0;
end if
od;
od;
return Iszero;
end proc:
with(combstruct):
list6:= convert(list5, list):
list7 := [];
for ii from 1 to nops(list6) do
if list6[ii] <> 0 then
list7 := [list6[ii], op(list7)];
end if;
od;
with(LinearAlgebra):
with(VectorCalculus):
varlist := [x1, x2, x3];
Iter:= iterstructs(Permutation(list7), size=2):
Count := 1;

with(DEtools):
Iter:= iterstructs(Permutation(list7), size=2):
Count := 1;
list8 := [];
while not Iter[finished] do
p:= Iter[nextvalue]();
I1 := 0;
I2 := 0;
if IsZeroMatrix(p[1]) = 0 and IsZeroMatrix(p[2]) = 0 then
group1 := Matrix(p[1]);
for ii from 1 to 3 do
for jj from 1 to 3 do
if group1[ii][jj] = 1 then
I1 := I1 + varlist[ii]*varlist[jj];
end if;
od;
od;
group2 := Matrix(p[2]);
for ii from 1 to 3 do
for jj from 1 to 3 do
if group2[ii][jj] = 1 then
I2 := I2 + varlist[ii]*varlist[jj];
end if;
od;
od;
f2:=[I1, I2];
g2:=[0,-1,1];
h2:=[x1,0,0];
Lf2h := CheckRelativeRankZero(h2,f2, g2, varlist, Count);
print(“Lf2h=”);
print(Lf2h);
RightSide := MatrixMatrixMultiply(Matrix([[0,diff(I2, varlist[3]),-diff(I2,varlist[2])],[-diff(I2, varlist[3]),0,diff(I2, varlist[1])],[diff(I2, varlist[2]),-diff(I2, varlist[1]),0]]), Matrix([[diff(I1, varlist[1])],[diff(I1, varlist[2])],[diff(I1, varlist[3])]]));
print(“RightSide”);
print(RightSide);
Lf2_h := Lfh(1, Lf2h, f2, varlist);
LgLf_h := Lfh(1,Lfh(1,h2,f2,varlist),g2, varlist);
if LgLf_h = 0 then
u:=0;
else
u := -Lf2_h/LgLf_h;
end if;
newsys := [Diff(x1(t),t) = subs(x3=x3(t),subs(x2=x2(t),subs(x1=x1(t),RightSide[1][1]))) + g[1]*u,
Diff(x2(t),t) = subs(x3=x3(t),subs(x2=x2(t),subs(x1=x1(t),RightSide[2][1]))) + g[2]*u,
Diff(x3(t),t) = subs(x3=x3(t),subs(x2=x2(t),subs(x1=x1(t),RightSide[3][1]))) + g[3]*u];
eval(plotsetup):
`plotsetup/devices`[jpeg]:=[jpeg,`plot.jpg`,[],[],``]:
plotsetup(jpeg, plotoutput=cat(cat(`testhamiplot`, Count),`.jpg`),plotoptions=`height=700,width=800`);
DEplot3d(value(newsys), [x1(t), x2(t), x3(t)], t = 0..1,[[x1(0) = 1, x2(0) = 1, x3(0) = 1]]);

Count := Count +1;
end if;
end do:

when i got this error, i am confused i guess t is independant variable, x1,y1,z1 are dependant variables

 

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]:
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t);
b1 := Diff(y1(t),t) = k4*x1(t)+ k5*y1(t)+ k6*z1(t);
c1 := Diff(z1(t),t) = k7*x1(t)+ k8*y1(t)+ k9*z1(t);
ICS:=x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1];
sol:=dsolve({a1,b1,c1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
ans:=proc(p1,p2,p3) sol(parameters=[x1=p1,y1=p2,z1=p3]); end proc:
tim := [seq(n, n=1..27)];
FitParams:=Statistics:-NonlinearFit(ans, [x11, y11, z11], tim, initialvalues=<0.5,0.5,0.5>, output=parametervalues);

 

 

4th_order.mw Is it possible to solve this ODE with perturbation method using maple? If yes, please give the procedure.

Thanks.

Can one solve nonlinear ODE with perturbation method in maple? If yes, please the procedure.

x11 := Vector([0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]):
y11 := Vector([ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]):
z11 := Vector([ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]):
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u(t);
ICS:=x1(0)=x11[1],y1(0)=y11[1],z1(0)=z11[1],u(0)=7;
Zt := rhs(dsolve({a1,b1,c1,ICS},[x1(t),y1(t),z1(t),u(t)]));
Params := NonlinearFit(Re(Zt),<seq(k,k=0..N)>, C, [t], parameternames=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12], output=parametervalues):
A := eval(a, Params):
B := eval(b, Params):
a = A;
b = B;

 

i wait for a long time for dsolve still evaluating

Hi. I'd like to find the solution closest to zero for sum(abs(f(k, m, n)+g(k, m, n)), n = i .. j) , when a < m, n < b . 

Have trouble wrapping my head around how to do that and would appreciate any help.

Even better would be to find a solution where the maximum absolute value of f(k, m, n) + g(k, m, n) is minimized for n = i .. j) and when a < m, n < b , but I'm guessing the sum would be easier, and close enough.

Maybe I'm barking up the wrong tree getting this done with Maple, but I'm hopeful.

Thank you for looking

function [y g] = ques5
% using Simpson Formula to approximate the integration
% input:
% f(x): [a b]


end
% use Euler formula to compute function y
for i = 1:N
    if i ==1

legend('numerical y','exact y','numerical g','exact g')

function g = f2g(a,b)
% f(x) = x
g = (b-a)/6*(a + 4*(a+b)/2 + b);


ican use matlab to solve this problem but not maple
please help

Two questions:

The algortihms that Groebner[Basis] uses at each step computes some "tentative" or "pseudo-basis". The "tentative" basis is not a Groebner basis but it is in the ideal generated by the original system of polynomial eq.

1) Is this correct ? Provided this is correct, then

2) How can one retrive the last "tentative" basis?
 If I just use timelimit I can abort the computations but how can one retrive the last computation?

 

Hello, I am trying to do a fourier transfrom using the package < DiscreteTransfroms >.

The function is an gaussian function for now,

Here is the code I tried

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

restart

with(DiscreteTransform):

> X := Vector(1000, proc (k) options operator, arrow; (1/200)*k-5/2 end proc);
> Y := Vector(1000, proc (k) options operator, arrow; evalf(exp(-10*((1/100)*k-5)^2)) end proc);

> X2, Y2 := FourierTransform(X, Y);
Vector[column](%id = 18446744080244879358),

Vector[column](%id = 18446744080244879478)
> plot(X2, Re(Y2));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The program returns two vector, X2 and Y2 who are supposed to be the fourier transforme of a gaussian so.. a gausian but when I plot the result X2 on the horizontal and Y2 on vertical, the graph doesn't resemble a gaussian function or any function at all.

 

Please help!!

Alex

First 228 229 230 231 232 233 234 Last Page 230 of 2218