Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

This is problem from INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014 ,  Chapter 2. First Order Equations. Exercises 2.4, page 57, problem 39

Maple 2024.2 can't solve it. But solution is arctan(t)-t*y(t)^2 = 0 which Maple verifies correct

restart;

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1848 and is the same as the version installed in this computer, created 2025, March 11, 16:9 hours Pacific Time.`

restart;

ode:=(1/(1+t^2)-y(t)^2)-(2*t*y(t))*diff(y(t),t)=0;
IC:=y(0)=0;

1/(t^2+1)-y(t)^2-2*t*y(t)*(diff(y(t), t)) = 0

y(0) = 0

sol:=dsolve([ode,IC])

mysol:=arctan(t)-t*y(t)^2 = 0;

arctan(t)-y(t)^2*t = 0

odetest(mysol,[ode,IC])

[0, 0]

 

 

Download can_not_dsolve_march_12_2025.mw

Any one has suggestion how to help dsolve find this solution?

Hey guys, 

I am solving many systems of polynomial equations. Sometimes I get the same solution, just in a diffrent are, so for example the first solution is for y between 0 and 1 and the second solution is for y between 1 and 2. So now I want to take those solutions intervals and combine them so I can make one solution out of two. However I am struggeling with working with intervals in Maple. It is not that easy how I expected it to be.

I wrote an own program which works quite nice unless there is a single solution which would meen an interval like [1,1] meaning y=1working_with_intervals.mw

restart; sets := [{1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]; intervals := [RealRange(Open(1), Open(infinity)), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]; correct_form := [y::(RealRange(Open(1), Open(infinity))), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]; Sol := solve(`~`[convert](Or(op(correct_form)), relation))

[{1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]

 

[RealRange(Open(1), infinity), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]

 

[y::(RealRange(Open(1), infinity)), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]

 

RealRange(Open(0), Open(1)), RealRange(Open(1), infinity)

(1)

restart; sets := [{1}, {1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]; intervals := [[1, 1], RealRange(Open(1), Open(infinity)), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]; correct_form := [y::[1, 1], y::(RealRange(Open(1), Open(infinity))), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]; Sol := solve(`~`[convert](Or(op(correct_form)), relation))

[{1}, {1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]

 

[[1, 1], RealRange(Open(1), infinity), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]

 

[y::[1, 1], y::(RealRange(Open(1), infinity)), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]

 

RealRange(Open(0), Open(1)), RealRange(Open(1), infinity)

(2)
 

NULL

Download working_with_intervals.mw

In the attached file you can see my problem. When I add the intervall [1,1] the solution should become (0,infty), but it seems like Maple does not understand what I mean by [1,1], so the 1 is not part of the solution "Sol".

FYI: I wrote a program which is able to convert "sets" into "intervals" into "correct_form" using RealRange, but it is not necesarry for my problem. 

So my questions are: Why doesnt Maple recognize [1,1] as an interval containing only the 1? Is there a way I can rewrite the intervall so I can use it for the solve process in "Sol"? I also thought about making two diffrent sets with the same intervals than adding [1,2) to the one set and (1,2) to the other set and than make an intersection but I seems to be very complicated for a seemingly easy problem. Is there a easier way to work with intervals? 

Regards and thank you

Felix

Hi,

In order to obtain an algebraic system, one must set the coeffcients of (H + G′/G2)i to zero. Solve the obtained algebraic system.

But the expressions were not arranged correctly, but no answer was obtained, while the answer was as follows:

 

``NULL

restart

with(PDEtools):
df:= diff(diff(G(xi), xi)/(G(xi)^2), xi)= A+B*(diff(G(xi), xi)/(G(xi)^2))^2+ c*(diff(G(xi), xi)/(G(xi)^2));

(diff(diff(G(xi), xi), xi))/G(xi)^2-2*(diff(G(xi), xi))^2/G(xi)^3 = A+B*(diff(G(xi), xi))^2/G(xi)^4+c*(diff(G(xi), xi))/G(xi)^2

(1)

a := [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10]:

 

NULL

p:= -2: q:= 2:

Y1 :=xi -> (add(a[i+3]*(H+(diff(G(xi), xi)/(G(xi)^2)))^i, i = p .. q)):

NULL

eq1 := -4*(k^2)*m*diff(Y1(xi), xi,xi) - 4*l*(Y1(xi)^2)+(4*(nu^2)-4*nu*n+n^2-4)*Y1(xi):

eq2:=subs(df,eq1);

-4*k^2*m*(6*a0*(A+B*(diff(G(xi), xi))^2/G(xi)^4+c*(diff(G(xi), xi))/G(xi)^2)^2/(H+(diff(G(xi), xi))/G(xi)^2)^4-2*a0*((diff(diff(diff(G(xi), xi), xi), xi))/G(xi)^2-6*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^3+6*(diff(G(xi), xi))^3/G(xi)^4)/(H+(diff(G(xi), xi))/G(xi)^2)^3+2*a1*(A+B*(diff(G(xi), xi))^2/G(xi)^4+c*(diff(G(xi), xi))/G(xi)^2)^2/(H+(diff(G(xi), xi))/G(xi)^2)^3-a1*((diff(diff(diff(G(xi), xi), xi), xi))/G(xi)^2-6*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^3+6*(diff(G(xi), xi))^3/G(xi)^4)/(H+(diff(G(xi), xi))/G(xi)^2)^2+a3*((diff(diff(diff(G(xi), xi), xi), xi))/G(xi)^2-6*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^3+6*(diff(G(xi), xi))^3/G(xi)^4)+2*a4*(A+B*(diff(G(xi), xi))^2/G(xi)^4+c*(diff(G(xi), xi))/G(xi)^2)^2+2*a4*(H+(diff(G(xi), xi))/G(xi)^2)*((diff(diff(diff(G(xi), xi), xi), xi))/G(xi)^2-6*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^3+6*(diff(G(xi), xi))^3/G(xi)^4))-4*l*(a0/(H+(diff(G(xi), xi))/G(xi)^2)^2+a1/(H+(diff(G(xi), xi))/G(xi)^2)+a2+a3*(H+(diff(G(xi), xi))/G(xi)^2)+a4*(H+(diff(G(xi), xi))/G(xi)^2)^2)^2+(n^2-4*n*nu+4*nu^2-4)*(a0/(H+(diff(G(xi), xi))/G(xi)^2)^2+a1/(H+(diff(G(xi), xi))/G(xi)^2)+a2+a3*(H+(diff(G(xi), xi))/G(xi)^2)+a4*(H+(diff(G(xi), xi))/G(xi)^2)^2)

(2)

simplify(eq2):

fin1:=simplify(numer(%)):

``

for i from 0 to degree(fin1,H+(diff(G(xi), xi)/(G(xi)^2))) do EQ[i]:=simplify(coeff(fin1,H+(diff(G(xi), xi)/(G(xi)^2)),i)); end do;

4*k^2*(H*G(xi)^2+diff(G(xi), xi))*(-2*(diff(G(xi), xi))^4*a4-G(xi)^2*(8*H*a4+a3)*(diff(G(xi), xi))^3-3*G(xi)^4*H*(4*H*a4+a3)*(diff(G(xi), xi))^2+G(xi)^6*(-8*H^3*a4-3*H^2*a3+a1)*(diff(G(xi), xi))+G(xi)^8*(-2*H^4*a4-H^3*a3+H*a1+2*a0))*m*G(xi)^4*(diff(diff(diff(G(xi), xi), xi), xi))-24*(diff(G(xi), xi))*k^2*(H*G(xi)^2+diff(G(xi), xi))*(-2*(diff(G(xi), xi))^4*a4-G(xi)^2*(8*H*a4+a3)*(diff(G(xi), xi))^3-3*G(xi)^4*H*(4*H*a4+a3)*(diff(G(xi), xi))^2+G(xi)^6*(-8*H^3*a4-3*H^2*a3+a1)*(diff(G(xi), xi))+G(xi)^8*(-2*H^4*a4-H^3*a3+H*a1+2*a0))*m*G(xi)^3*(diff(diff(G(xi), xi), xi))-4*a4*(12*k^2*m*G(xi)^2+2*B^2*m*k^2+a4*l)*(diff(G(xi), xi))^8-8*G(xi)^2*(3*k^2*m*(10*H*a4+a3)*G(xi)^2+a4*((4*B^2*k^2*m+4*a4*l)*H+2*c*B*m*k^2+a3*l))*(diff(G(xi), xi))^7-16*(6*H*k^2*m*(5*H*a4+a3)*G(xi)^2+(3*B^2*a4*k^2*m+7*a4^2*l)*H^2+(7/2)*((8/7)*c*B*m*k^2+a3*l)*a4*H+(m*(B*A+(1/2)*c^2)*k^2+(1/2)*l*a2-(1/4)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(1/4)*a3^2*l)*G(xi)^4*(diff(G(xi), xi))^6-64*G(xi)^6*(-(3/8)*k^2*m*(-20*H^3*a4-6*H^2*a3+a1)*G(xi)^2+((1/2)*k^2*m*B^2*a4+(7/2)*a4^2*l)*H^3+(21/8)*((4/7)*c*B*m*k^2+a3*l)*a4*H^2+((m*(B*A+(1/2)*c^2)*k^2+(3/4)*l*a2-(3/8)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(3/8)*a3^2*l)*H+((1/4)*c*A*m*k^2+(1/8)*a1*l)*a4+(1/8)*a1*B^2*k^2*m+(1/8)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*(diff(G(xi), xi))^5-8*G(xi)^8*(-6*k^2*m*(-5*H^4*a4-2*H^3*a3+H*a1+a0)*G(xi)^2+(B^2*a4*k^2*m+35*a4^2*l)*H^4+35*((8/35)*c*B*m*k^2+a3*l)*a4*H^3+(((12*A*B+6*c^2)*m*k^2+15*l*a2-(15/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(15/2)*a3^2*l)*H^2+((8*A*c*k^2*m+5*a1*l)*a4+a1*B^2*k^2*m+5*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H+(A^2*k^2*m+a0*l)*a4+(3*B^2*a0+2*B*a1*c)*m*k^2+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*(diff(G(xi), xi))^4-32*G(xi)^10*(-(3/4)*H*k^2*m*(-2*H^4*a4-H^3*a3+H*a1+2*a0)*G(xi)^2+7*H^5*a4^2*l+(35/4)*((2/35)*c*B*m*k^2+a3*l)*a4*H^4+((m*(2*A*B+c^2)*k^2+5*l*a2-(5/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(5/2)*a3^2*l)*H^3+(((5/2)*a1*l+3*c*A*m*k^2)*a4+(5/2)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^2+((A^2*k^2*m+a0*l)*a4+(1/2)*k^2*m*B*a1*c+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H+(1/2)*((B*A+(1/2)*c^2)*a1+3*B*a0*c)*m*k^2+((1/4)*a0*a3+(1/4)*a1*a2)*l-(1/8)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*(diff(G(xi), xi))^3-48*((7/3)*H^6*a4^2*l+(7/2)*H^5*a3*a4*l+(((1/3)*m*(B*A+(1/2)*c^2)*k^2+(5/2)*l*a2-(5/4)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(5/4)*a3^2*l)*H^4+(((5/3)*a1*l+(4/3)*c*A*m*k^2)*a4+(5/3)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^3+((A^2*k^2*m+a0*l)*a4+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^2+((1/3)*(B*A+(1/2)*c^2)*a1*m*k^2+((1/2)*a0*a3+(1/2)*a1*a2)*l-(1/4)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H+(1/3)*m*(A*a1*c+3*(B*A+(1/2)*c^2)*a0)*k^2+((1/6)*a0*a2+(1/12)*a1^2)*l-(1/12)*(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*G(xi)^12*(diff(G(xi), xi))^2-8*(4*a4^2*H^7*l+7*a3*a4*H^6*l+((6*l*a2+3*nu*n-3*nu^2-(3/4)*n^2+3)*a4+3*a3^2*l)*H^5+((2*A*c*k^2*m+5*a1*l)*a4+5*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^4+((4*A^2*k^2*m+4*a0*l)*a4+(4*a1*a3+2*a2^2)*l-2*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^3+((3*a0*a3+3*a1*a2)*l-(3/2)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H^2+(2*k^2*m*A*a1*c+(2*a0*a2+a1^2)*l-(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*H+A*m*(A*a1+6*a0*c)*k^2+a1*l*a0)*G(xi)^14*(diff(G(xi), xi))-8*G(xi)^16*((1/2)*H^8*a4^2*l+H^7*a3*a4*l+((l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(1/2)*a3^2*l)*H^6+(a1*a4*l+a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^5+((A^2*k^2*m+a0*l)*a4+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^4+((a0*a3+a1*a2)*l-(1/2)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H^3+(((1/2)*a1^2+a0*a2)*l-(1/2)*(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*H^2+a1*(A^2*k^2*m+a0*l)*H+(1/2)*a0^2*l+3*k^2*m*A^2*a0)

(3)

 

NULL

for i from 0 to degree(fin1,H+(diff(G(xi), xi)/(G(xi)^2))) do EQ[i]:=simplify(coeff(fin1,H+(diff(G(xi), xi)/(G(xi)^2)),i)); end do;

4*k^2*(H*G(xi)^2+diff(G(xi), xi))*(-2*(diff(G(xi), xi))^4*a4-G(xi)^2*(8*H*a4+a3)*(diff(G(xi), xi))^3-3*G(xi)^4*H*(4*H*a4+a3)*(diff(G(xi), xi))^2+G(xi)^6*(-8*H^3*a4-3*H^2*a3+a1)*(diff(G(xi), xi))+G(xi)^8*(-2*H^4*a4-H^3*a3+H*a1+2*a0))*m*G(xi)^4*(diff(diff(diff(G(xi), xi), xi), xi))-24*(diff(G(xi), xi))*k^2*(H*G(xi)^2+diff(G(xi), xi))*(-2*(diff(G(xi), xi))^4*a4-G(xi)^2*(8*H*a4+a3)*(diff(G(xi), xi))^3-3*G(xi)^4*H*(4*H*a4+a3)*(diff(G(xi), xi))^2+G(xi)^6*(-8*H^3*a4-3*H^2*a3+a1)*(diff(G(xi), xi))+G(xi)^8*(-2*H^4*a4-H^3*a3+H*a1+2*a0))*m*G(xi)^3*(diff(diff(G(xi), xi), xi))-4*a4*(12*k^2*m*G(xi)^2+2*B^2*m*k^2+a4*l)*(diff(G(xi), xi))^8-8*G(xi)^2*(3*k^2*m*(10*H*a4+a3)*G(xi)^2+a4*((4*B^2*k^2*m+4*a4*l)*H+2*c*B*m*k^2+a3*l))*(diff(G(xi), xi))^7-16*(6*H*k^2*m*(5*H*a4+a3)*G(xi)^2+(3*B^2*a4*k^2*m+7*a4^2*l)*H^2+(7/2)*((8/7)*c*B*m*k^2+a3*l)*a4*H+(m*(B*A+(1/2)*c^2)*k^2+(1/2)*l*a2-(1/4)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(1/4)*a3^2*l)*G(xi)^4*(diff(G(xi), xi))^6-64*G(xi)^6*(-(3/8)*k^2*m*(-20*H^3*a4-6*H^2*a3+a1)*G(xi)^2+((1/2)*k^2*m*B^2*a4+(7/2)*a4^2*l)*H^3+(21/8)*((4/7)*c*B*m*k^2+a3*l)*a4*H^2+((m*(B*A+(1/2)*c^2)*k^2+(3/4)*l*a2-(3/8)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(3/8)*a3^2*l)*H+((1/4)*c*A*m*k^2+(1/8)*a1*l)*a4+(1/8)*a1*B^2*k^2*m+(1/8)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*(diff(G(xi), xi))^5-8*G(xi)^8*(-6*k^2*m*(-5*H^4*a4-2*H^3*a3+H*a1+a0)*G(xi)^2+(B^2*a4*k^2*m+35*a4^2*l)*H^4+35*((8/35)*c*B*m*k^2+a3*l)*a4*H^3+(((12*A*B+6*c^2)*m*k^2+15*l*a2-(15/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(15/2)*a3^2*l)*H^2+((8*A*c*k^2*m+5*a1*l)*a4+a1*B^2*k^2*m+5*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H+(A^2*k^2*m+a0*l)*a4+(3*B^2*a0+2*B*a1*c)*m*k^2+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*(diff(G(xi), xi))^4-32*G(xi)^10*(-(3/4)*H*k^2*m*(-2*H^4*a4-H^3*a3+H*a1+2*a0)*G(xi)^2+7*H^5*a4^2*l+(35/4)*((2/35)*c*B*m*k^2+a3*l)*a4*H^4+((m*(2*A*B+c^2)*k^2+5*l*a2-(5/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(5/2)*a3^2*l)*H^3+(((5/2)*a1*l+3*c*A*m*k^2)*a4+(5/2)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^2+((A^2*k^2*m+a0*l)*a4+(1/2)*k^2*m*B*a1*c+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H+(1/2)*((B*A+(1/2)*c^2)*a1+3*B*a0*c)*m*k^2+((1/4)*a0*a3+(1/4)*a1*a2)*l-(1/8)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*(diff(G(xi), xi))^3-48*((7/3)*H^6*a4^2*l+(7/2)*H^5*a3*a4*l+(((1/3)*m*(B*A+(1/2)*c^2)*k^2+(5/2)*l*a2-(5/4)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(5/4)*a3^2*l)*H^4+(((5/3)*a1*l+(4/3)*c*A*m*k^2)*a4+(5/3)*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^3+((A^2*k^2*m+a0*l)*a4+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^2+((1/3)*(B*A+(1/2)*c^2)*a1*m*k^2+((1/2)*a0*a3+(1/2)*a1*a2)*l-(1/4)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H+(1/3)*m*(A*a1*c+3*(B*A+(1/2)*c^2)*a0)*k^2+((1/6)*a0*a2+(1/12)*a1^2)*l-(1/12)*(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*G(xi)^12*(diff(G(xi), xi))^2-8*(4*a4^2*H^7*l+7*a3*a4*H^6*l+((6*l*a2+3*nu*n-3*nu^2-(3/4)*n^2+3)*a4+3*a3^2*l)*H^5+((2*A*c*k^2*m+5*a1*l)*a4+5*a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^4+((4*A^2*k^2*m+4*a0*l)*a4+(4*a1*a3+2*a2^2)*l-2*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^3+((3*a0*a3+3*a1*a2)*l-(3/2)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H^2+(2*k^2*m*A*a1*c+(2*a0*a2+a1^2)*l-(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*H+A*m*(A*a1+6*a0*c)*k^2+a1*l*a0)*G(xi)^14*(diff(G(xi), xi))-8*G(xi)^16*((1/2)*H^8*a4^2*l+H^7*a3*a4*l+((l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1))*a4+(1/2)*a3^2*l)*H^6+(a1*a4*l+a3*(l*a2-(1/2)*(nu-(1/2)*n-1)*(nu-(1/2)*n+1)))*H^5+((A^2*k^2*m+a0*l)*a4+(a1*a3+(1/2)*a2^2)*l-(1/2)*(nu-(1/2)*n-1)*a2*(nu-(1/2)*n+1))*H^4+((a0*a3+a1*a2)*l-(1/2)*(nu-(1/2)*n-1)*a1*(nu-(1/2)*n+1))*H^3+(((1/2)*a1^2+a0*a2)*l-(1/2)*(nu-(1/2)*n-1)*a0*(nu-(1/2)*n+1))*H^2+a1*(A^2*k^2*m+a0*l)*H+(1/2)*a0^2*l+3*k^2*m*A^2*a0)

(4)

Eqs:={seq(EQ[i],i=0..12)}:

 

sol:=solve(Eqs,{a0, a1, a2, a3, a4, H, nu},explicit)

(5)
 

 

Download GGGGGGG2.mw

Hi!

I am studying Burger's equation, and I would like to see the steps that Maple takes to solve this.  "ShowSteps" doesn't seem to work.

Unfortunately, I am unable to share the worksheet I made.

Server Error - MaplePrimes

 
 

MaplePrimes
 
 
 
Connect with Maplesoft:
Questions  |  Posts  |  Tags  |  Users  |  Unanswered  |  Maplesoft Blog  |  Badges  |  Recent
© Maplesoft, a division of Waterloo Maple Inc. .  |  maplesoft.com  |  Terms of Use  |  Privacy  |  Consent Preferences  | Trademarks

 

loading

Error occurred during PDF generation. Please refresh the page and try again

i don't know where is issue?

p-not.mw

restart

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

t := 0

0

(1)

M := -(2*(-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)-(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta*conjugate(a[1]+I*b[1]))-(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*(a[2]+I*b[2])*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta)-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta*conjugate(a[1]+I*b[1]))-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta)+(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))-((6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+(36*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)))/((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)-(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta*conjugate(a[1]+I*b[1]))-(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta*conjugate(a[1]+I*b[1]))-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))-((6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+(36*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))

NULL

lprint(indets(M,name));

{beta, x, y, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]}

 

G := proc(alpha,beta,a__1,a__2,a__3,a__4,b__1,b__2,b__3,b__4) global last; last := [[:-alpha=alpha, :-beta=beta, :-a[1]=a__1 , :-a[2]=a__2, :-a[3]=a__3,:-a[4]=a__4,:-b[1]=b__1,:-b[2]=b__2,:-b[3]=b__3,:-b[4]=b__4], eval(M, [:-alpha=alpha, :-beta=beta,:-a[1]=a__1,:-a[2]=a__2 ,:-a[3]=a__3,:-a[4]=a__4,:-b[1]=b__1,:-b[2]=b__2,:-b[3]=b__3,:-b[4]=b__4])]; plot3d(eval(M), y = -100 .. 100, x = -100 .. 100, view = -100 .. 100, grid = [150, 150], color = blue, style = surface, adaptmesh = false, size = [500, 500]); end proc;

proc (alpha, beta, a__1, a__2, a__3, a__4, b__1, b__2, b__3, b__4) global last; last := [[:-alpha = alpha, :-beta = beta, :-a[1] = a__1, :-a[2] = a__2, :-a[3] = a__3, :-a[4] = a__4, :-b[1] = b__1, :-b[2] = b__2, :-b[3] = b__3, :-b[4] = b__4], eval(M, [:-alpha = alpha, :-beta = beta, :-a[1] = a__1, :-a[2] = a__2, :-a[3] = a__3, :-a[4] = a__4, :-b[1] = b__1, :-b[2] = b__2, :-b[3] = b__3, :-b[4] = b__4])]; plot3d(eval(M), y = -100 .. 100, x = -100 .. 100, view = -100 .. 100, grid = [150, 150], color = blue, style = surface, adaptmesh = false, size = [500, 500]) end proc

(2)

last := 'last'; Explore(G(alpha, beta, a__1, a__2, a__3, a__4, b__1, b__2, b__3, b__4), alpha = -5.000000001 .. 5.000000001, beta = -5.000000001 .. 5.00000010, a__1 = -5.000000001 .. 5.00000010, a__2 = -5.000000001 .. 5.00000010, a__3 = -5.000000001 .. 5.00000010, a__4 = -5.000000001 .. 5.00000010, b__1 = -5.000000001 .. 5.00000010, b__2 = -5.000000001 .. 5.00000010, b__3 = -5.000000001 .. 5.00000010, b__4 = -5.000000001 .. 5.00000010, placement = right)

Warning, expecting only range variables [y, x] in expression -2*(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*(a[2]+I*b[2])*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta+6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))/((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)) to be plotted but found names [beta, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]]

 

Warning, expecting only range variables [y, x] in expression -2*(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*(a[2]+I*b[2])*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta+6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))/((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)) to be plotted but found names [beta, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]]

 

i have an equilibrium, i want to simplify SEkuil_End[1] but with R0 eq in the simplify, how can i do that?

restart

with(VectorCalculus):

with(linalg):

with(DETools):

with(DynamicSystems):

_local(I):

I

 

Warning, The imaginary unit, I, has been renamed _I

 

dS := VectorCalculus:-`+`(VectorCalculus:-`+`(Lambda, VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(alpha, S), P))), VectorCalculus:-`-`(VectorCalculus:-`*`(mu, S)));

-P*S*alpha-S*mu+Lambda

 

alpha*S*P-(-T*eta+1)*beta*E-theta*E-mu*E

 

(-T*eta+1)*beta*E-delta*I-gamma*I-mu*I

 

E*theta+I*gamma-R*mu

 

-P*T*sigma+I*xi-P*tau

 

r*T*(1-T/K)-phi*T

(1)

SEkuil := solve({dE, dI, dP, dR, dS, dT}, {E, I, P, R, S, T}):

SEkuil_End := SEkuil[4]:

R0 := VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(Lambda, alpha), beta), r), xi), VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, eta), r), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, eta), phi))), VectorCalculus:-`-`(r))), 1/VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(mu, VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, phi), sigma), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, r), sigma))), VectorCalculus:-`-`(VectorCalculus:-`*`(r, tau)))), VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, beta), eta), phi), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(VectorCalculus:-`*`(K, beta), eta), r))), VectorCalculus:-`*`(beta, r)), VectorCalculus:-`*`(mu, r)), VectorCalculus:-`*`(r, theta))), VectorCalculus:-`+`(VectorCalculus:-`+`(delta, gamma), mu)));

Lambda*alpha*beta*r*xi*(-K*eta*phi+K*eta*r-r)/(mu*(K*phi*sigma-K*r*sigma-r*tau)*(K*beta*eta*phi-K*beta*eta*r+beta*r+mu*r+r*theta)*(delta+gamma+mu))

(2)

SEkuil_End[1]

E = (K^2*beta*delta*eta*mu*phi^2*sigma-2*K^2*beta*delta*eta*mu*phi*r*sigma+K^2*beta*delta*eta*mu*r^2*sigma+K^2*beta*eta*gamma*mu*phi^2*sigma-2*K^2*beta*eta*gamma*mu*phi*r*sigma+K^2*beta*eta*gamma*mu*r^2*sigma+K^2*beta*eta*mu^2*phi^2*sigma-2*K^2*beta*eta*mu^2*phi*r*sigma+K^2*beta*eta*mu^2*r^2*sigma+K*Lambda*alpha*beta*eta*phi*r*xi-K*Lambda*alpha*beta*eta*r^2*xi-K*beta*delta*eta*mu*phi*r*tau+K*beta*delta*eta*mu*r^2*tau-K*beta*eta*gamma*mu*phi*r*tau+K*beta*eta*gamma*mu*r^2*tau-K*beta*eta*mu^2*phi*r*tau+K*beta*eta*mu^2*r^2*tau+K*beta*delta*mu*phi*r*sigma-K*beta*delta*mu*r^2*sigma+K*beta*gamma*mu*phi*r*sigma-K*beta*gamma*mu*r^2*sigma+K*beta*mu^2*phi*r*sigma-K*beta*mu^2*r^2*sigma+K*delta*mu^2*phi*r*sigma-K*delta*mu^2*r^2*sigma+K*delta*mu*phi*r*sigma*theta-K*delta*mu*r^2*sigma*theta+K*gamma*mu^2*phi*r*sigma-K*gamma*mu^2*r^2*sigma+K*gamma*mu*phi*r*sigma*theta-K*gamma*mu*r^2*sigma*theta+K*mu^3*phi*r*sigma-K*mu^3*r^2*sigma+K*mu^2*phi*r*sigma*theta-K*mu^2*r^2*sigma*theta+Lambda*alpha*beta*r^2*xi-beta*delta*mu*r^2*tau-beta*gamma*mu*r^2*tau-beta*mu^2*r^2*tau-delta*mu^2*r^2*tau-delta*mu*r^2*tau*theta-gamma*mu^2*r^2*tau-gamma*mu*r^2*tau*theta-mu^3*r^2*tau-mu^2*r^2*tau*theta)/((K*eta*phi-K*eta*r+r)*xi*beta*(K*beta*eta*phi-K*beta*eta*r+beta*r+mu*r+r*theta)*alpha)

(3)
 

``

Download end.mw

I am trying to set up a new tensor expression (r^hat is my unit vector):  

Can someone show me how to do it and/or point me to the right help page? 

The first part of the equation works but the rest does not. How do I get around the problem with the different indices? Another problem I have is that KroneckerDelta is no longer a tensor. Is there a way to define it as such?

with(Physics); Setup(mathematicalnotation = true)

with(Vectors)NULL

Setup(spacetimeindices = greek, spaceindices = lowercaselatin, su2indices = uppercaselatin, signature = `- - - +`, coordinates = cartesian)

[coordinatesystems = {X}, signature = `- - - +`, spaceindices = lowercaselatin, spacetimeindices = greek, su2indices = uppercaselatin]
````

(1)

Define(A[mu, a] = (1-fA(r))/(g*r)*(LeviCivita[a, nu, mu, 4]*X[nu]/r))

{R, A[mu, a], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(2)

A[]

A[mu, a] = Matrix(%id = 36893490522608139428)

(3)

Define(V[mu, a] = (1-fA(r))/(g*r)*(LeviCivita[a, nu, mu, 4]*X[nu]/r)-fB(r)*(KroneckerDelta[i, j]-X[i]*X[j]/r^2)/gr+fC(r)*X[i]*X[j]/(gr*r^2))

Error, (in Physics:-Define) found different free indices in different operands of a sum; in operand 1: [], in operand 2: [i, j], in `+`(Physics:-KroneckerDelta[i,j],-Physics:-SpaceTimeVector[i](x,y,z,t)*Physics:-SpaceTimeVector[j](x,y,z,t)/r^2)

 

NULL

Download V_Tensor.mw

I am trying to draw the Poincare section diagram related pendulum problem, article is shared below. I can not understand and code gives error, can you help me to draw Poincare section Fig. 4 of attached article?7._Energy_distribution_in_intrinsically_coupled_system [moderator: URL changed to respect IP, as per Mapleprimes Terms of Use]

pendulum.mw

Hello everyone,

I have created a Maple worksheet titled "ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ", designed to help my students prepare for their final exams as they qualify for university. This worksheet focuses on area calculations in plane geometry, using Maple to visualize and solve problems efficiently.

This worksheet is aimed at high school students preparing for university entrance exams, as well as teachers who want to integrate Maple into their teaching.

I would love to hear your thoughts and feedback!

Have you used Maple for similar exam preparation?
εμβαδόν_χωρίου.mw

I believe I found I bug.

The 'next' statement for loop control will not work in 2D Input but it does in Code Edit Region.

From the documentation on 'next', I copied the following code into a 2D input in a document. 

Running it results in Error, invalid expression for eval; id=54 which is a missing help page.

for i to 4 do
    for j to 4 do
       print([i, j]);
         if i = j then next i;
        end if;
   end do;
end do

However 'next' without a following integer/name works fine in both 2D Input and Code Edit Region.

So is there only a subset of Maple code that will work in 2D Input?

I have calculated an expression which depends on functions. I would now like to calculate the derivative withe respect to a function  but when I try to do so I get the error “Deriving a functional ”Error, invalid input: diff received fA(r), which is not valid for its 2nd argument. There is no help page available for this error, so maybe someone knows what I am doing wrong .

I get this is because die diff function might not be able to handel a function as an argument, but how would I do it? 

L := -r^2*((-fA(r)^4+(-2*fB(r)^2-2*fC(r)^2+2)*fA(r)^2+4*(D(fB))(r)*fA(r)*fC(r)*r-fB(r)^4+(-2*fC(r)^2+2)*fB(r)^2-4*fB(r)*fC(r)*(D(fA))(r)*r-2*r^2*(D(fA))(r)^2-1-2*r^2*(D(fB))(r)^2)/(2*g^2*r^4)+(r*(fB(r)^2+(1/2)*fC(r)^2+fA(r)^2-2*fA(r)+1)*H(r)^2+(-(D(K))(r)*r^2*fC(r)-2*K(r)*fB(r)*r)*H(r)+(1/2)*K(r)^2*fC(r)^2*r+(D(H))(r)*K(r)*r^2*fC(r)+r*((fB(r)^2+fA(r)^2)*K(r)^2+(1/2)*r^2*((D(H))(r)^2+(D(K))(r)^2)))*v^2/(r^2)^(3/2)-lambda((1/2)*(K(r)^2+H(r)^2-1)*v^2)^2)

-r^2*((1/2)*(-fA(r)^4+(-2*fB(r)^2-2*fC(r)^2+2)*fA(r)^2+4*(D(fB))(r)*fA(r)*fC(r)*r-fB(r)^4+(-2*fC(r)^2+2)*fB(r)^2-4*fB(r)*fC(r)*(D(fA))(r)*r-2*r^2*(D(fA))(r)^2-1-2*r^2*(D(fB))(r)^2)/(g^2*r^4)+(r*(fB(r)^2+(1/2)*fC(r)^2+fA(r)^2-2*fA(r)+1)*H(r)^2+(-(D(K))(r)*r^2*fC(r)-2*K(r)*fB(r)*r)*H(r)+(1/2)*K(r)^2*fC(r)^2*r+(D(H))(r)*K(r)*r^2*fC(r)+r*((fB(r)^2+fA(r)^2)*K(r)^2+(1/2)*r^2*((D(H))(r)^2+(D(K))(r)^2)))*v^2/(r^2)^(3/2)-lambda((1/2)*(K(r)^2+H(r)^2-1)*v^2)^2)

(1)

diff(L, fA(r))

Error, invalid input: diff received fA(r), which is not valid for its 2nd argument

 
 

``

Download test_funtion.mw

Hi,

Is there a way to vary C in steps of fractions of Pi ? Thanks

Q_Pi_scaling.mw

For practice, I would like to calculate the left-hand limit according to the attached file. The computer does not finish. The result pi^2/6 is known from a calculation "on foot".

restart

``

limit((1-t)^2*(sum(k*t^k/(1-t^k), k = 1 .. infinity)), t = 1, left)

limit((1-t)^2*(sum(k*t^k/(1-t^k), k = 1 .. infinity)), t = 1, left)

(1)

"(->)"``

``

Download test.mwtest.mw

Hello, an interesting issue about set equivalence.

Logically, the two sets are equivalent by derivation.

The first principal case, for set A, k=0, the element values ​​are Pi/6 and 5*Pi/6, which corresponds to the case of k=0 (element value is Pi/6) and k=1 (element value is 5*Pi/6) in set B. Obviously, the k value is not one-to-one correspondence, but just a letter representing a positive integer. As for the second general case, it is the same steps I thought.

So, how to verify that the two sets are equivalent? I know Maple cannot do it in one step, but I don't know how to do it?

A := solve(sin(x) = 1/2, allsolutions = true)

(1/6)*Pi+2*Pi*_Z5, (5/6)*Pi+2*Pi*_Z5

(1)

A := `assuming`([`union`({(1/6)*Pi+2*k*Pi}, {Pi-(1/6)*Pi+2*k*Pi})], [k::integer])

{(1/6)*Pi+2*k*Pi, (5/6)*Pi+2*k*Pi}

(2)

B := `assuming`([{k*Pi+(1/6)*(-1)^k*Pi}], [k::integer])

{k*Pi+(1/6)*(-1)^k*Pi}

(3)

is(A = B)

false

(4)

restart

alpha = 'alpha'

alpha = alpha

(5)

solve(sin(x) = alpha, x, allsolutions = true)

2*Pi*_Z1+arcsin(alpha), -arcsin(alpha)+Pi+2*Pi*_Z1

(6)

A := `assuming`([`union`({arcsin(alpha)+2*k*Pi}, {Pi-arcsin(alpha)+2*k*Pi})], [k::integer])

{arcsin(alpha)+2*k*Pi, Pi-arcsin(alpha)+2*k*Pi}

(7)

B := `assuming`([{k*Pi+(-1)^k*arcsin(alpha)}], [k::integer])

{k*Pi+(-1)^k*arcsin(alpha)}

(8)

is(A = B)

false

(9)
 

NULL

Download verify_set_A_and_set_B_is_equivalent.mw

I have Maple 2024 and successfully loaded the FeynmanIntegral package with:

with(Physics); with(FeynmanIntegral);

Maple confirms that FeynmanIntegral is loaded by displaying:

[Evaluate, ExpandDimension, FromAbstractRepresentation, Parametrize, Series, SumLookup, TensorBasis, TensorReduce, ToAbstractRepresentation, epsilon, varepsilon]

However, when I attempt to evaluate a Feynman integral, Maple only displays the unevaluated expression instead of computing it:

Delta(q); %FeynmanIntegral(1/p^2*1/(p + q)^2, p);

And explicitly calling Evaluate() does not compute the result:

Evaluate(Delta(q));

  1. Using Evaluate() explicitly:

    FeynmanIntegral:-Evaluate(1 / (p^2 * (p + q)^2), p);

    Result: No evaluation, only displays the input.

  2. Assigning the integral to a variable before evaluating:

    I := FeynmanIntegral(1 / (p^2 * (p + q)^2), p); Evaluate(I);

    Result: Still does not evaluate.

  3. Using dimension= instead of d= when specifying the spacetime dimension:

    FeynmanIntegral:-Evaluate(1 / (p^2 * (p + q)^2), p, dimension = 4 - 2*epsilon);

    Result: No evaluation.

  4. Checking if FeynmanIntegral functions exist:

    showstat(FeynmanIntegral);

    Result: The package seems loaded, but it does not execute calculations.

I expect FeynmanIntegral:-Evaluate(...) to automatically compute the dimensional integral using Feynman rules and return a result.

  1. Is FeynmanIntegral:-Evaluate() broken in Maple 2024?
  2. Are there additional setup steps needed to enable full functionality?
  3. Has anyone successfully used FeynmanIntegral for automatic dimensional integration?
  4. Are there alternative Maple functions/packages for computing Feynman integrals in dimensional regularization?

Any help would be greatly appreciated!

First 27 28 29 30 31 32 33 Last Page 29 of 2216