Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I create a table of 3D points in one worksheet and would like to use these values at a later time in a separate worksheet.

What is the simplest way to do this?


 

restart

with(LinearAlgebra)

InvT := Matrix([[c^2, s^2, -2*s*c], [s^2, c^2, 2*s*c], [s*c, -s*c, c^2-s^2]])

Matrix(%id = 18446746411704779590)

(1)

T := Matrix([[c^2, s^2, 2*s*c], [s^2, c^2, -2*s*c], [-s*c, s*c, c^2-s^2]])

Matrix(%id = 18446746411704773678)

(2)

c := cos(p)

cos(p)

(3)

s = sin(p)

s = sin(p)

(4)

Q := Matrix([[Q11, Q12, 0], [Q12, Q22, 0], [0, 0, Q66]])

Matrix(%id = 18446746411704759470)

(5)

Q11 := E1/(-v12*v21+1); Q12 := E2/(-v12*v21+1); Q66 := G12

E1/(-v12*v21+1)

 

E2/(-v12*v21+1)

 

G12

(6)

E1 := 0.233e12; E2 := 0.231e11; v21 := 0.2e-1; v12 := .2; G12 := 0.717e10

0.233e12

 

0.231e11

 

0.2e-1

 

.2

 

0.717e10

(7)

R := Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 2]])

Matrix(%id = 18446746411704747062)

(8)

Qbar := Matrix([[Qb11, Qb12, Qb16], [Qb12, Qb22, Qb26], [Qb16, Qb26, Qb66]])

Matrix(%id = 18446746411704742726)

(9)

InvR := MatrixInverse(R)

Matrix(%id = 18446746411704745726)

(10)

eq1 := Qbar = InvT.Q.R.T.InvR

Matrix(%id = 18446746411704742726) = Matrix(%id = 18446746411704732718)

(11)

plot(Qb11, p = 0 .. 9)

Warning, expecting only range variable p in expression Qb11 to be plotted but found name Qb11

 

 

NULL


 

Download plotting_elements_of_matrix.mw

How to solve these systems of BVP and obtain values for gamma term.

Hi

I was trying to find the inverse of a function where the domain has been restricted. For example

solve(x=subs(x=y, x^2+8*x), y, useassumptions) assuming x::RealRange(-4, Open(infinity));

and my hope was that including the assumption would result in a single solution but it still gives me two solutions as it would without the assumption.

I would like to algorithmically end up with a single solution. Currently I am only working with functions that have variables to the power of 0, 1 or 2 and additionally square roots, but a more general method would be optimal. What am I doing wrong?

Can you use the Dirac function in different coordinate systems?

Dear all

I have a second order PDE, i used pdesolve but no solution obtained, why?

pdsolve_pde.mw

thanks

 

 

Is there a way to ask Maple to re-write the expression 

a:=1/3 -exp(-3)/3 into a:=1/3*(1-exp(-3))  ?

The command "factor" doesn't seem to work. Thank you.


Can the number of frames per second be changed programmatically in animate and/or animatecurve ?

Thanks in advance

I should know this, but I don't: Is there a plotting command to plot a list of points, like so:

list:=[[x1,y1],[x2,y2],etc...]; plotlist(list);

(a Vector of points would also be ok)?

There is plots:-pointplot which plots two Vectors (or maybe lists) against each other.

plots:-listplot plots a list against the index. Both are useful commands I employ a lot, but sometimes I'd like to plot pairs as above directly.

Note that I do know how to transform the list of pairs into two lists, or whatever; that is not the issue. I am looking whether there is a command that does this by itself, transparently, before I program myself such a routine because I am too dense with the Maple Help facility.

Thanks,

Mac Dude.

 

Using insert sequences: `%*`(seq(...))

 

Behaves very poorly when the sequence has one element. E.g., if this is a double sequence(say a double sum) then when the inner seq/sum has one element the inert visual is poorly displayed with extra junk rather than just showing one element.

`%+`(floor(5 %/ (2 %* 3 %* 5)))

 

E.g., rathernt han just showing:

(floor(5 %/ (2 %* 3 %* 5)))

 

Is there any way to get it to play nice without having to modify the functions/(this is a global problem so it deserves a global solution rather than ad-hoc that has to be applied to every usage).

 

 

I have some algebraic expression which I want to expand.

I used the ExpandSteps command to show me the steps, but I guess I used it incorrectly.

Attached below the file with the commands.

It should be expanded to -\Delta*\sin^2(\theta), but I want maple to show me the steps.

ExpandSteps.mw
 

"with(Student[Basics]):  Delta:=r^(2)-2 M*r+a^(2);  rho^():=sqrt(r^(2)+a^(2)*(cos(theta))^(2));  ExpandSteps((a^(2)*sin^(2)(theta)-Delta^(2))*((r^(2)+a^(2))^(2)-a^(2 )*Delta*sin^(2)(theta))*((sin^(2)(theta))/(rho^(4)))-(4 *a^(2)*M^(2)*r^(2)*sin^(4)(theta))/(rho^(4)))"

Error, (in Student:-Basics:-ExpandSteps) too many levels of recursion

 

NULL


 

Download ExpandSteps.mw

 

Let A(-2,3,-5),B(-6,1,-1),C(2,-3,7) and point D on BC where the angle  DAB = angle DAC  .Find the equation of line AD?

Hello everyone,

While trying to open a maple document, a box pops up with the text "How do you want to open this file?" with the options "Maple Text, Plain Text, Maple Inputs" what could be responsible for this? and which of the options is better for mathematics and coding?

 

Thank you so much

Dear maple users,

A fine day wishes to all.

I have solved the PDE via PDsolve. Here I need to calculate the Psi function. How to calculate the indefinite integral and how to find the constant-coefficient (C1).

Here Psi=0 at x=0

int_c.mw


 

restart:

with(PDEtools):

with(plots):

fcns := {f(x,t),theta(x,t)};

{f(x, t), theta(x, t)}

(1)

d:=0.5:xi:=0.1:

R:=z->piecewise(d<=z and z<=d+1,1-2*xi*(cos((2*3.14)*((z-d)*(1/2))-1/4)-(7/100)*cos((32*3.14)*(z-d-1/2))),1);

proc (z) options operator, arrow; piecewise(d <= z and z <= d+1, 1-2*xi*(cos(2*3.14*((1/2)*z-(1/2)*d)-1/4)-(7/100)*cos(32*3.14*(z-d-1/2))), 1) end proc

(2)

PDE1 :=(diff(f(x,t),t))=1+(1-2*theta((x,t)))*(1/(R(z)^2))*((diff(f(x,t),x,x))+(1/x)*diff(f(x,t),x))+theta((x,t));

PDE1 := diff(f(x, t), t) = 1+(1-2*theta(x, t))*(diff(f(x, t), x, x)+(diff(f(x, t), x))/x)/piecewise(.5 <= z and z <= 1.5, 1-.2*cos(3.140000000*z-1.820000000)+0.1400000000e-1*cos(100.48*z-100.4800000), 1)^2+theta(x, t)

(3)

PDE2 :=2*(diff(theta(x,t),t))=(1/(R(z)^2))*((diff(theta(x,t),x,x))+(1/x)*diff(theta(x,t),x));

PDE2 := 2*(diff(theta(x, t), t)) = (diff(theta(x, t), x, x)+(diff(theta(x, t), x))/x)/piecewise(.5 <= z and z <= 1.5, 1-.2*cos(3.140000000*z-1.820000000)+0.1400000000e-1*cos(100.48*z-100.4800000), 1)^2

(4)

IBC := {D[1](f)(0,t)=0,f(1,t)=0,f(x,0)=0,D[1](theta)(0,t)=0,theta(1,t)=1,theta(x,0)=0};

{f(1, t) = 0, f(x, 0) = 0, theta(1, t) = 1, theta(x, 0) = 0, (D[1](f))(0, t) = 0, (D[1](theta))(0, t) = 0}

(5)

z:=0.98:

NULL

sol:=pdsolve(eval([PDE1,PDE2]),IBC ,numeric, time = t):
sol:-value(f(x,t), output=listprocedure);
fN:=eval( f(x,t), sol:-value(f(x,t), output=listprocedure)):

[x = proc () option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; evalf(args[1]) end proc, t = proc () option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; evalf(args[2]) end proc, f(x, t) = proc () local tv, xv, solnproc, stype, ndsol, vals; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; Digits := trunc(evalhf(Digits)); solnproc := proc (tv, xv) local INFO, errest, nd, dvars, dary, daryt, daryx, vals, msg, i, j; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; table( [( "soln_procedures" ) = array( 1 .. 1, [( 1 ) = (4374356738)  ] ) ] ) INFO := table( [( "depshift" ) = [1, 2], ( "solmat_v" ) = Vector(462, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0, (43) = .0, (44) = .0, (45) = .0, (46) = .0, (47) = .0, (48) = .0, (49) = .0, (50) = .0, (51) = .0, (52) = .0, (53) = .0, (54) = .0, (55) = .0, (56) = .0, (57) = .0, (58) = .0, (59) = .0, (60) = .0, (61) = .0, (62) = .0, (63) = .0, (64) = .0, (65) = .0, (66) = .0, (67) = .0, (68) = .0, (69) = .0, (70) = .0, (71) = .0, (72) = .0, (73) = .0, (74) = .0, (75) = .0, (76) = .0, (77) = .0, (78) = .0, (79) = .0, (80) = .0, (81) = .0, (82) = .0, (83) = .0, (84) = .0, (85) = .0, (86) = .0, (87) = .0, (88) = .0, (89) = .0, (90) = .0, (91) = .0, (92) = .0, (93) = .0, (94) = .0, (95) = .0, (96) = .0, (97) = .0, (98) = .0, (99) = .0, (100) = .0, (101) = .0, (102) = .0, (103) = .0, (104) = .0, (105) = .0, (106) = .0, (107) = .0, (108) = .0, (109) = .0, (110) = .0, (111) = .0, (112) = .0, (113) = .0, (114) = .0, (115) = .0, (116) = .0, (117) = .0, (118) = .0, (119) = .0, (120) = .0, (121) = .0, (122) = .0, (123) = .0, (124) = .0, (125) = .0, (126) = .0, (127) = .0, (128) = .0, (129) = .0, (130) = .0, (131) = .0, (132) = .0, (133) = .0, (134) = .0, (135) = .0, (136) = .0, (137) = .0, (138) = .0, (139) = .0, (140) = .0, (141) = .0, (142) = .0, (143) = .0, (144) = .0, (145) = .0, (146) = .0, (147) = .0, (148) = .0, (149) = .0, (150) = .0, (151) = .0, (152) = .0, (153) = .0, (154) = .0, (155) = .0, (156) = .0, (157) = .0, (158) = .0, (159) = .0, (160) = .0, (161) = .0, (162) = .0, (163) = .0, (164) = .0, (165) = .0, (166) = .0, (167) = .0, (168) = .0, (169) = .0, (170) = .0, (171) = .0, (172) = .0, (173) = .0, (174) = .0, (175) = .0, (176) = .0, (177) = .0, (178) = .0, (179) = .0, (180) = .0, (181) = .0, (182) = .0, (183) = .0, (184) = .0, (185) = .0, (186) = .0, (187) = .0, (188) = .0, (189) = .0, (190) = .0, (191) = .0, (192) = .0, (193) = .0, (194) = .0, (195) = .0, (196) = .0, (197) = .0, (198) = .0, (199) = .0, (200) = .0, (201) = .0, (202) = .0, (203) = .0, (204) = .0, (205) = .0, (206) = .0, (207) = .0, (208) = .0, (209) = .0, (210) = .0, (211) = .0, (212) = .0, (213) = .0, (214) = .0, (215) = .0, (216) = .0, (217) = .0, (218) = .0, (219) = .0, (220) = .0, (221) = .0, (222) = .0, (223) = .0, (224) = .0, (225) = .0, (226) = .0, (227) = .0, (228) = .0, (229) = .0, (230) = .0, (231) = .0, (232) = .0, (233) = .0, (234) = .0, (235) = .0, (236) = .0, (237) = .0, (238) = .0, (239) = .0, (240) = .0, (241) = .0, (242) = .0, (243) = .0, (244) = .0, (245) = .0, (246) = .0, (247) = .0, (248) = .0, (249) = .0, (250) = .0, (251) = .0, (252) = .0, (253) = .0, (254) = .0, (255) = .0, (256) = .0, (257) = .0, (258) = .0, (259) = .0, (260) = .0, (261) = .0, (262) = .0, (263) = .0, (264) = .0, (265) = .0, (266) = .0, (267) = .0, (268) = .0, (269) = .0, (270) = .0, (271) = .0, (272) = .0, (273) = .0, (274) = .0, (275) = .0, (276) = .0, (277) = .0, (278) = .0, (279) = .0, (280) = .0, (281) = .0, (282) = .0, (283) = .0, (284) = .0, (285) = .0, (286) = .0, (287) = .0, (288) = .0, (289) = .0, (290) = .0, (291) = .0, (292) = .0, (293) = .0, (294) = .0, (295) = .0, (296) = .0, (297) = .0, (298) = .0, (299) = .0, (300) = .0, (301) = .0, (302) = .0, (303) = .0, (304) = .0, (305) = .0, (306) = .0, (307) = .0, (308) = .0, (309) = .0, (310) = .0, (311) = .0, (312) = .0, (313) = .0, (314) = .0, (315) = .0, (316) = .0, (317) = .0, (318) = .0, (319) = .0, (320) = .0, (321) = .0, (322) = .0, (323) = .0, (324) = .0, (325) = .0, (326) = .0, (327) = .0, (328) = .0, (329) = .0, (330) = .0, (331) = .0, (332) = .0, (333) = .0, (334) = .0, (335) = .0, (336) = .0, (337) = .0, (338) = .0, (339) = .0, (340) = .0, (341) = .0, (342) = .0, (343) = .0, (344) = .0, (345) = .0, (346) = .0, (347) = .0, (348) = .0, (349) = .0, (350) = .0, (351) = .0, (352) = .0, (353) = .0, (354) = .0, (355) = .0, (356) = .0, (357) = .0, (358) = .0, (359) = .0, (360) = .0, (361) = .0, (362) = .0, (363) = .0, (364) = .0, (365) = .0, (366) = .0, (367) = .0, (368) = .0, (369) = .0, (370) = .0, (371) = .0, (372) = .0, (373) = .0, (374) = .0, (375) = .0, (376) = .0, (377) = .0, (378) = .0, (379) = .0, (380) = .0, (381) = .0, (382) = .0, (383) = .0, (384) = .0, (385) = .0, (386) = .0, (387) = .0, (388) = .0, (389) = .0, (390) = .0, (391) = .0, (392) = .0, (393) = .0, (394) = .0, (395) = .0, (396) = .0, (397) = .0, (398) = .0, (399) = .0, (400) = .0, (401) = .0, (402) = .0, (403) = .0, (404) = .0, (405) = .0, (406) = .0, (407) = .0, (408) = .0, (409) = .0, (410) = .0, (411) = .0, (412) = .0, (413) = .0, (414) = .0, (415) = .0, (416) = .0, (417) = .0, (418) = .0, (419) = .0, (420) = .0, (421) = .0, (422) = .0, (423) = .0, (424) = .0, (425) = .0, (426) = .0, (427) = .0, (428) = .0, (429) = .0, (430) = .0, (431) = .0, (432) = .0, (433) = .0, (434) = .0, (435) = .0, (436) = .0, (437) = .0, (438) = .0, (439) = .0, (440) = .0, (441) = .0, (442) = .0, (443) = .0, (444) = .0, (445) = .0, (446) = .0, (447) = .0, (448) = .0, (449) = .0, (450) = .0, (451) = .0, (452) = .0, (453) = .0, (454) = .0, (455) = .0, (456) = .0, (457) = .0, (458) = .0, (459) = .0, (460) = .0, (461) = .0, (462) = .0}, datatype = float[8], order = C_order, attributes = [source_rtable = (Matrix(42, 11, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (1, 9) = .0, (1, 10) = .0, (1, 11) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (2, 9) = .0, (2, 10) = .0, (2, 11) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (3, 9) = .0, (3, 10) = .0, (3, 11) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (4, 9) = .0, (4, 10) = .0, (4, 11) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (5, 9) = .0, (5, 10) = .0, (5, 11) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (6, 9) = .0, (6, 10) = .0, (6, 11) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (7, 9) = .0, (7, 10) = .0, (7, 11) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0, (8, 9) = .0, (8, 10) = .0, (8, 11) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (9, 8) = .0, (9, 9) = .0, (9, 10) = .0, (9, 11) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (10, 7) = .0, (10, 8) = .0, (10, 9) = .0, (10, 10) = .0, (10, 11) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (11, 7) = .0, (11, 8) = .0, (11, 9) = .0, (11, 10) = .0, (11, 11) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (12, 7) = .0, (12, 8) = .0, (12, 9) = .0, (12, 10) = .0, (12, 11) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (13, 8) = .0, (13, 9) = .0, (13, 10) = .0, (13, 11) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (14, 7) = .0, (14, 8) = .0, (14, 9) = .0, (14, 10) = .0, (14, 11) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (15, 7) = .0, (15, 8) = .0, (15, 9) = .0, (15, 10) = .0, (15, 11) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (16, 7) = .0, (16, 8) = .0, (16, 9) = .0, (16, 10) = .0, (16, 11) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (17, 7) = .0, (17, 8) = .0, (17, 9) = .0, (17, 10) = .0, (17, 11) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (18, 7) = .0, (18, 8) = .0, (18, 9) = .0, (18, 10) = .0, (18, 11) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (19, 7) = .0, (19, 8) = .0, (19, 9) = .0, (19, 10) = .0, (19, 11) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (20, 7) = .0, (20, 8) = .0, (20, 9) = .0, (20, 10) = .0, (20, 11) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0, (21, 7) = .0, (21, 8) = .0, (21, 9) = .0, (21, 10) = .0, (21, 11) = .0, (22, 1) = .0, (22, 2) = .0, (22, 3) = .0, (22, 4) = .0, (22, 5) = .0, (22, 6) = .0, (22, 7) = .0, (22, 8) = .0, (22, 9) = .0, (22, 10) = .0, (22, 11) = .0, (23, 1) = .0, (23, 2) = .0, (23, 3) = .0, (23, 4) = .0, (23, 5) = .0, (23, 6) = .0, (23, 7) = .0, (23, 8) = .0, (23, 9) = .0, (23, 10) = .0, (23, 11) = .0, (24, 1) = .0, (24, 2) = .0, (24, 3) = .0, (24, 4) = .0, (24, 5) = .0, (24, 6) = .0, (24, 7) = .0, (24, 8) = .0, (24, 9) = .0, (24, 10) = .0, (24, 11) = .0, (25, 1) = .0, (25, 2) = .0, (25, 3) = .0, (25, 4) = .0, (25, 5) = .0, (25, 6) = .0, (25, 7) = .0, (25, 8) = .0, (25, 9) = .0, (25, 10) = .0, (25, 11) = .0, (26, 1) = .0, (26, 2) = .0, (26, 3) = .0, (26, 4) = .0, (26, 5) = .0, (26, 6) = .0, (26, 7) = .0, (26, 8) = .0, (26, 9) = .0, (26, 10) = .0, (26, 11) = .0, (27, 1) = .0, (27, 2) = .0, (27, 3) = .0, (27, 4) = .0, (27, 5) = .0, (27, 6) = .0, (27, 7) = .0, (27, 8) = .0, (27, 9) = .0, (27, 10) = .0, (27, 11) = .0, (28, 1) = .0, (28, 2) = .0, (28, 3) = .0, (28, 4) = .0, (28, 5) = .0, (28, 6) = .0, (28, 7) = .0, (28, 8) = .0, (28, 9) = .0, (28, 10) = .0, (28, 11) = .0, (29, 1) = .0, (29, 2) = .0, (29, 3) = .0, (29, 4) = .0, (29, 5) = .0, (29, 6) = .0, (29, 7) = .0, (29, 8) = .0, (29, 9) = .0, (29, 10) = .0, (29, 11) = .0, (30, 1) = .0, (30, 2) = .0, (30, 3) = .0, (30, 4) = .0, (30, 5) = .0, (30, 6) = .0, (30, 7) = .0, (30, 8) = .0, (30, 9) = .0, (30, 10) = .0, (30, 11) = .0, (31, 1) = .0, (31, 2) = .0, (31, 3) = .0, (31, 4) = .0, (31, 5) = .0, (31, 6) = .0, (31, 7) = .0, (31, 8) = .0, (31, 9) = .0, (31, 10) = .0, (31, 11) = .0, (32, 1) = .0, (32, 2) = .0, (32, 3) = .0, (32, 4) = .0, (32, 5) = .0, (32, 6) = .0, (32, 7) = .0, (32, 8) = .0, (32, 9) = .0, (32, 10) = .0, (32, 11) = .0, (33, 1) = .0, (33, 2) = .0, (33, 3) = .0, (33, 4) = .0, (33, 5) = .0, (33, 6) = .0, (33, 7) = .0, (33, 8) = .0, (33, 9) = .0, (33, 10) = .0, (33, 11) = .0, (34, 1) = .0, (34, 2) = .0, (34, 3) = .0, (34, 4) = .0, (34, 5) = .0, (34, 6) = .0, (34, 7) = .0, (34, 8) = .0, (34, 9) = .0, (34, 10) = .0, (34, 11) = .0, (35, 1) = .0, (35, 2) = .0, (35, 3) = .0, (35, 4) = .0, (35, 5) = .0, (35, 6) = .0, (35, 7) = .0, (35, 8) = .0, (35, 9) = .0, (35, 10) = .0, (35, 11) = .0, (36, 1) = .0, (36, 2) = .0, (36, 3) = .0, (36, 4) = .0, (36, 5) = .0, (36, 6) = .0, (36, 7) = .0, (36, 8) = .0, (36, 9) = .0, (36, 10) = .0, (36, 11) = .0, (37, 1) = .0, (37, 2) = .0, (37, 3) = .0, (37, 4) = .0, (37, 5) = .0, (37, 6) = .0, (37, 7) = .0, (37, 8) = .0, (37, 9) = .0, (37, 10) = .0, (37, 11) = .0, (38, 1) = .0, (38, 2) = .0, (38, 3) = .0, (38, 4) = .0, (38, 5) = .0, (38, 6) = .0, (38, 7) = .0, (38, 8) = .0, (38, 9) = .0, (38, 10) = .0, (38, 11) = .0, (39, 1) = .0, (39, 2) = .0, (39, 3) = .0, (39, 4) = .0, (39, 5) = .0, (39, 6) = .0, (39, 7) = .0, (39, 8) = .0, (39, 9) = .0, (39, 10) = .0, (39, 11) = .0, (40, 1) = .0, (40, 2) = .0, (40, 3) = .0, (40, 4) = .0, (40, 5) = .0, (40, 6) = .0, (40, 7) = .0, (40, 8) = .0, (40, 9) = .0, (40, 10) = .0, (40, 11) = .0, (41, 1) = .0, (41, 2) = .0, (41, 3) = .0, (41, 4) = .0, (41, 5) = .0, (41, 6) = .0, (41, 7) = .0, (41, 8) = .0, (41, 9) = .0, (41, 10) = .0, (41, 11) = .0, (42, 1) = .0, (42, 2) = .0, (42, 3) = .0, (42, 4) = .0, (42, 5) = .0, (42, 6) = .0, (42, 7) = .0, (42, 8) = .0, (42, 9) = .0, (42, 10) = .0, (42, 11) = .0}, datatype = float[8], order = C_order))]), ( "initialized" ) = false, ( "indepvars" ) = [x, t], ( "explicit" ) = false, ( "depvars" ) = [f, theta], ( "mixed" ) = false, ( "solvec4" ) = Vector(42, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0}, datatype = float[8]), ( "autonomous" ) = true, ( "vectorproc" ) = proc (v, vp, vpp, t, x, k, h, n, vec) local _s1, _s10, _s11, _s12, _s13, _s2, _s3, _s4, _s5, _s6, _s7, _s8, _s9, xi; _s5 := -2300735754*k; _s6 := -4601471508*k; _s7 := -4000000000*h^2; _s8 := -8000000000*h^2; _s9 := -1150367877*k*h; _s10 := -2000000000*k*h^2; _s11 := -4000000000*k*h^2; _s12 := -_s6-_s7; _s13 := -_s6-_s8; vec[1] := (-(3/2)*v[1]+2*v[3]-(1/2)*v[5])/h; vec[-1+2*n] := v[-1+2*n]; for xi from 2 to n-1 do _s1 := -vp[-3+2*xi]+vp[1+2*xi]; _s4 := vp[-3+2*xi]-2*vp[-1+2*xi]+vp[1+2*xi]; vec[-1+2*xi] := (_s5*_s4*v[2*xi]*x[xi]+_s5*_s4*vp[2*xi]*x[xi]+_s5*v[2*xi]*v[-3+2*xi]*x[xi]-_s6*v[2*xi]*v[-1+2*xi]*x[xi]+_s5*v[2*xi]*v[1+2*xi]*x[xi]+_s5*v[-3+2*xi]*vp[2*xi]*x[xi]-_s6*v[-1+2*xi]*vp[2*xi]*x[xi]+_s5*v[1+2*xi]*vp[2*xi]*x[xi]-_s9*_s1-_s11*x[xi]+_s9*v[-3+2*xi]-_s9*v[1+2*xi]-_s12*v[-1+2*xi]*x[xi]+_s9*_s1*v[2*xi]+_s9*_s1*vp[2*xi]-_s5*_s4*x[xi]-_s9*v[2*xi]*v[-3+2*xi]+_s9*v[2*xi]*v[1+2*xi]-_s9*v[-3+2*xi]*vp[2*xi]+_s9*v[1+2*xi]*vp[2*xi]-_s7*vp[-1+2*xi]*x[xi]-_s10*x[xi]*v[2*xi]-_s10*x[xi]*vp[2*xi]-_s5*v[-3+2*xi]*x[xi]-_s5*v[1+2*xi]*x[xi])/(_s11*x[xi]) end do; vec[2] := (-(3/2)*v[2]+2*v[4]-(1/2)*v[6])/h; vec[2*n] := v[2*n]-1; for xi from 2 to n-1 do _s2 := -vp[2*xi-2]+vp[2+2*xi]; _s3 := vp[2*xi-2]-2*vp[2*xi]+vp[2+2*xi]; vec[2*xi] := -(_s13*v[2*xi]*x[xi]+_s3*_s5*x[xi]+_s5*v[2+2*xi]*x[xi]+_s5*v[2*xi-2]*x[xi]+_s8*vp[2*xi]*x[xi]+_s2*_s9+_s9*v[2+2*xi]-_s9*v[2*xi-2])/(_s11*x[xi]) end do end proc, ( "adjusted" ) = false, ( "solmatrix" ) = Matrix(42, 11, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (1, 8) = .0, (1, 9) = .0, (1, 10) = .0, (1, 11) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = .0, (2, 9) = .0, (2, 10) = .0, (2, 11) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (3, 8) = .0, (3, 9) = .0, (3, 10) = .0, (3, 11) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (4, 8) = .0, (4, 9) = .0, (4, 10) = .0, (4, 11) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = .0, (5, 9) = .0, (5, 10) = .0, (5, 11) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (6, 8) = .0, (6, 9) = .0, (6, 10) = .0, (6, 11) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (7, 8) = .0, (7, 9) = .0, (7, 10) = .0, (7, 11) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (8, 8) = .0, (8, 9) = .0, (8, 10) = .0, (8, 11) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (9, 8) = .0, (9, 9) = .0, (9, 10) = .0, (9, 11) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (10, 7) = .0, (10, 8) = .0, (10, 9) = .0, (10, 10) = .0, (10, 11) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (11, 7) = .0, (11, 8) = .0, (11, 9) = .0, (11, 10) = .0, (11, 11) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (12, 7) = .0, (12, 8) = .0, (12, 9) = .0, (12, 10) = .0, (12, 11) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (13, 8) = .0, (13, 9) = .0, (13, 10) = .0, (13, 11) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (14, 7) = .0, (14, 8) = .0, (14, 9) = .0, (14, 10) = .0, (14, 11) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (15, 7) = .0, (15, 8) = .0, (15, 9) = .0, (15, 10) = .0, (15, 11) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (16, 7) = .0, (16, 8) = .0, (16, 9) = .0, (16, 10) = .0, (16, 11) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (17, 7) = .0, (17, 8) = .0, (17, 9) = .0, (17, 10) = .0, (17, 11) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (18, 7) = .0, (18, 8) = .0, (18, 9) = .0, (18, 10) = .0, (18, 11) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (19, 7) = .0, (19, 8) = .0, (19, 9) = .0, (19, 10) = .0, (19, 11) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (20, 7) = .0, (20, 8) = .0, (20, 9) = .0, (20, 10) = .0, (20, 11) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0, (21, 7) = .0, (21, 8) = .0, (21, 9) = .0, (21, 10) = .0, (21, 11) = .0, (22, 1) = .0, (22, 2) = .0, (22, 3) = .0, (22, 4) = .0, (22, 5) = .0, (22, 6) = .0, (22, 7) = .0, (22, 8) = .0, (22, 9) = .0, (22, 10) = .0, (22, 11) = .0, (23, 1) = .0, (23, 2) = .0, (23, 3) = .0, (23, 4) = .0, (23, 5) = .0, (23, 6) = .0, (23, 7) = .0, (23, 8) = .0, (23, 9) = .0, (23, 10) = .0, (23, 11) = .0, (24, 1) = .0, (24, 2) = .0, (24, 3) = .0, (24, 4) = .0, (24, 5) = .0, (24, 6) = .0, (24, 7) = .0, (24, 8) = .0, (24, 9) = .0, (24, 10) = .0, (24, 11) = .0, (25, 1) = .0, (25, 2) = .0, (25, 3) = .0, (25, 4) = .0, (25, 5) = .0, (25, 6) = .0, (25, 7) = .0, (25, 8) = .0, (25, 9) = .0, (25, 10) = .0, (25, 11) = .0, (26, 1) = .0, (26, 2) = .0, (26, 3) = .0, (26, 4) = .0, (26, 5) = .0, (26, 6) = .0, (26, 7) = .0, (26, 8) = .0, (26, 9) = .0, (26, 10) = .0, (26, 11) = .0, (27, 1) = .0, (27, 2) = .0, (27, 3) = .0, (27, 4) = .0, (27, 5) = .0, (27, 6) = .0, (27, 7) = .0, (27, 8) = .0, (27, 9) = .0, (27, 10) = .0, (27, 11) = .0, (28, 1) = .0, (28, 2) = .0, (28, 3) = .0, (28, 4) = .0, (28, 5) = .0, (28, 6) = .0, (28, 7) = .0, (28, 8) = .0, (28, 9) = .0, (28, 10) = .0, (28, 11) = .0, (29, 1) = .0, (29, 2) = .0, (29, 3) = .0, (29, 4) = .0, (29, 5) = .0, (29, 6) = .0, (29, 7) = .0, (29, 8) = .0, (29, 9) = .0, (29, 10) = .0, (29, 11) = .0, (30, 1) = .0, (30, 2) = .0, (30, 3) = .0, (30, 4) = .0, (30, 5) = .0, (30, 6) = .0, (30, 7) = .0, (30, 8) = .0, (30, 9) = .0, (30, 10) = .0, (30, 11) = .0, (31, 1) = .0, (31, 2) = .0, (31, 3) = .0, (31, 4) = .0, (31, 5) = .0, (31, 6) = .0, (31, 7) = .0, (31, 8) = .0, (31, 9) = .0, (31, 10) = .0, (31, 11) = .0, (32, 1) = .0, (32, 2) = .0, (32, 3) = .0, (32, 4) = .0, (32, 5) = .0, (32, 6) = .0, (32, 7) = .0, (32, 8) = .0, (32, 9) = .0, (32, 10) = .0, (32, 11) = .0, (33, 1) = .0, (33, 2) = .0, (33, 3) = .0, (33, 4) = .0, (33, 5) = .0, (33, 6) = .0, (33, 7) = .0, (33, 8) = .0, (33, 9) = .0, (33, 10) = .0, (33, 11) = .0, (34, 1) = .0, (34, 2) = .0, (34, 3) = .0, (34, 4) = .0, (34, 5) = .0, (34, 6) = .0, (34, 7) = .0, (34, 8) = .0, (34, 9) = .0, (34, 10) = .0, (34, 11) = .0, (35, 1) = .0, (35, 2) = .0, (35, 3) = .0, (35, 4) = .0, (35, 5) = .0, (35, 6) = .0, (35, 7) = .0, (35, 8) = .0, (35, 9) = .0, (35, 10) = .0, (35, 11) = .0, (36, 1) = .0, (36, 2) = .0, (36, 3) = .0, (36, 4) = .0, (36, 5) = .0, (36, 6) = .0, (36, 7) = .0, (36, 8) = .0, (36, 9) = .0, (36, 10) = .0, (36, 11) = .0, (37, 1) = .0, (37, 2) = .0, (37, 3) = .0, (37, 4) = .0, (37, 5) = .0, (37, 6) = .0, (37, 7) = .0, (37, 8) = .0, (37, 9) = .0, (37, 10) = .0, (37, 11) = .0, (38, 1) = .0, (38, 2) = .0, (38, 3) = .0, (38, 4) = .0, (38, 5) = .0, (38, 6) = .0, (38, 7) = .0, (38, 8) = .0, (38, 9) = .0, (38, 10) = .0, (38, 11) = .0, (39, 1) = .0, (39, 2) = .0, (39, 3) = .0, (39, 4) = .0, (39, 5) = .0, (39, 6) = .0, (39, 7) = .0, (39, 8) = .0, (39, 9) = .0, (39, 10) = .0, (39, 11) = .0, (40, 1) = .0, (40, 2) = .0, (40, 3) = .0, (40, 4) = .0, (40, 5) = .0, (40, 6) = .0, (40, 7) = .0, (40, 8) = .0, (40, 9) = .0, (40, 10) = .0, (40, 11) = .0, (41, 1) = .0, (41, 2) = .0, (41, 3) = .0, (41, 4) = .0, (41, 5) = .0, (41, 6) = .0, (41, 7) = .0, (41, 8) = .0, (41, 9) = .0, (41, 10) = .0, (41, 11) = .0, (42, 1) = .0, (42, 2) = .0, (42, 3) = .0, (42, 4) = .0, (42, 5) = .0, (42, 6) = .0, (42, 7) = .0, (42, 8) = .0, (42, 9) = .0, (42, 10) = .0, (42, 11) = .0}, datatype = float[8], order = C_order), ( "eqndep" ) = [1, 2], ( "timevar" ) = t, ( "intspace" ) = Matrix(21, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0, (8, 1) = .0, (8, 2) = .0, (9, 1) = .0, (9, 2) = .0, (10, 1) = .0, (10, 2) = .0, (11, 1) = .0, (11, 2) = .0, (12, 1) = .0, (12, 2) = .0, (13, 1) = .0, (13, 2) = .0, (14, 1) = .0, (14, 2) = .0, (15, 1) = .0, (15, 2) = .0, (16, 1) = .0, (16, 2) = .0, (17, 1) = .0, (17, 2) = .0, (18, 1) = .0, (18, 2) = .0, (19, 1) = .0, (19, 2) = .0, (20, 1) = .0, (20, 2) = .0, (21, 1) = .0, (21, 2) = .0}, datatype = float[8], order = C_order), ( "solspace" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = 1.0}, datatype = float[8]), ( "matrixproc" ) = proc (v, vp, vpp, t, x, k, h, n, mat) local _s1, _s10, _s11, _s12, _s13, _s2, _s3, _s4, _s5, _s6, _s7, _s8, _s9, xi; _s3 := -1150367877*h; _s4 := -2300735754*k; _s5 := 4601471508*k; _s6 := 4000000000*h^2; _s7 := -1150367877*k*h; _s8 := 1000000000*k*h^2; _s9 := 2000000000*k*h^2; _s10 := 4000000000*k*h^2; _s11 := (1150367877/1000000000)/h^2; _s12 := -2000000000*h^2-1150367877*k; _s13 := -(1/1000000000)*(1000000000*h^2+1150367877*k)/(k*h^2); mat[4] := (3/2)/h; mat[6] := -2/h; mat[8] := (1/2)/h; mat[22*n-18] := -1; for xi from 2 to n-1 do _s1 := -vp[-3+2*xi]+vp[1+2*xi]; _s2 := vp[-3+2*xi]-2*vp[-1+2*xi]+vp[1+2*xi]; mat[22*xi-17] := (_s2*_s4*x[xi]+_s4*v[-3+2*xi]*x[xi]+_s4*v[1+2*xi]*x[xi]+_s5*v[-1+2*xi]*x[xi]+_s1*_s7-_s7*v[-3+2*xi]+_s7*v[1+2*xi]+_s9*x[xi])/(_s10*x[xi]); mat[22*xi-20] := -(-1+v[2*xi]+vp[2*xi])*(_s3+2300735754*x[xi])/(_s6*x[xi]); mat[22*xi-18] := _s11*v[2*xi]+_s11*vp[2*xi]+_s13; mat[22*xi-16] := (-1+v[2*xi]+vp[2*xi])*(_s3-2300735754*x[xi])/(_s6*x[xi]) end do; mat[15] := (3/2)/h; mat[17] := -2/h; mat[19] := (1/2)/h; mat[-7+22*n] := -1; for xi from 2 to n-1 do mat[-7+22*xi] := _s12/_s8; mat[-5+22*xi] := -(_s4*x[xi]+_s7)/(_s10*x[xi]); mat[-9+22*xi] := -(_s4*x[xi]-_s7)/(_s10*x[xi]) end do end proc, ( "timeidx" ) = 2, ( "totalwidth" ) = 11, ( "spacepts" ) = 21, ( "depeqn" ) = [1, 2], ( "maxords" ) = [2, 1], ( "bandwidth" ) = [2, 6], ( "timestep" ) = 0.500000000000000e-1, ( "minspcpoints" ) = 4, ( "spacevar" ) = x, ( "spacestep" ) = 0.500000000000000e-1, ( "fdepvars" ) = [f(x, t), theta(x, t)], ( "theta" ) = 1/2, ( "spaceadaptive" ) = false, ( "periodic" ) = false, ( "solmat_ne" ) = 0, ( "pts", x ) = [0, 1], ( "solvec5" ) = Vector(42, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0}, datatype = float[8]), ( "extrabcs" ) = [0, 0], ( "solution" ) = Array(1..3, 1..21, 1..2, {(1, 1, 1) = .0, (1, 1, 2) = .0, (1, 2, 1) = .0, (1, 2, 2) = .0, (1, 3, 1) = .0, (1, 3, 2) = .0, (1, 4, 1) = .0, (1, 4, 2) = .0, (1, 5, 1) = .0, (1, 5, 2) = .0, (1, 6, 1) = .0, (1, 6, 2) = .0, (1, 7, 1) = .0, (1, 7, 2) = .0, (1, 8, 1) = .0, (1, 8, 2) = .0, (1, 9, 1) = .0, (1, 9, 2) = .0, (1, 10, 1) = .0, (1, 10, 2) = .0, (1, 11, 1) = .0, (1, 11, 2) = .0, (1, 12, 1) = .0, (1, 12, 2) = .0, (1, 13, 1) = .0, (1, 13, 2) = .0, (1, 14, 1) = .0, (1, 14, 2) = .0, (1, 15, 1) = .0, (1, 15, 2) = .0, (1, 16, 1) = .0, (1, 16, 2) = .0, (1, 17, 1) = .0, (1, 17, 2) = .0, (1, 18, 1) = .0, (1, 18, 2) = .0, (1, 19, 1) = .0, (1, 19, 2) = .0, (1, 20, 1) = .0, (1, 20, 2) = .0, (1, 21, 1) = .0, (1, 21, 2) = .0, (2, 1, 1) = .0, (2, 1, 2) = .0, (2, 2, 1) = .0, (2, 2, 2) = .0, (2, 3, 1) = .0, (2, 3, 2) = .0, (2, 4, 1) = .0, (2, 4, 2) = .0, (2, 5, 1) = .0, (2, 5, 2) = .0, (2, 6, 1) = .0, (2, 6, 2) = .0, (2, 7, 1) = .0, (2, 7, 2) = .0, (2, 8, 1) = .0, (2, 8, 2) = .0, (2, 9, 1) = .0, (2, 9, 2) = .0, (2, 10, 1) = .0, (2, 10, 2) = .0, (2, 11, 1) = .0, (2, 11, 2) = .0, (2, 12, 1) = .0, (2, 12, 2) = .0, (2, 13, 1) = .0, (2, 13, 2) = .0, (2, 14, 1) = .0, (2, 14, 2) = .0, (2, 15, 1) = .0, (2, 15, 2) = .0, (2, 16, 1) = .0, (2, 16, 2) = .0, (2, 17, 1) = .0, (2, 17, 2) = .0, (2, 18, 1) = .0, (2, 18, 2) = .0, (2, 19, 1) = .0, (2, 19, 2) = .0, (2, 20, 1) = .0, (2, 20, 2) = .0, (2, 21, 1) = .0, (2, 21, 2) = .0, (3, 1, 1) = .0, (3, 1, 2) = .0, (3, 2, 1) = .0, (3, 2, 2) = .0, (3, 3, 1) = .0, (3, 3, 2) = .0, (3, 4, 1) = .0, (3, 4, 2) = .0, (3, 5, 1) = .0, (3, 5, 2) = .0, (3, 6, 1) = .0, (3, 6, 2) = .0, (3, 7, 1) = .0, (3, 7, 2) = .0, (3, 8, 1) = .0, (3, 8, 2) = .0, (3, 9, 1) = .0, (3, 9, 2) = .0, (3, 10, 1) = .0, (3, 10, 2) = .0, (3, 11, 1) = .0, (3, 11, 2) = .0, (3, 12, 1) = .0, (3, 12, 2) = .0, (3, 13, 1) = .0, (3, 13, 2) = .0, (3, 14, 1) = .0, (3, 14, 2) = .0, (3, 15, 1) = .0, (3, 15, 2) = .0, (3, 16, 1) = .0, (3, 16, 2) = .0, (3, 17, 1) = .0, (3, 17, 2) = .0, (3, 18, 1) = .0, (3, 18, 2) = .0, (3, 19, 1) = .0, (3, 19, 2) = .0, (3, 20, 1) = .0, (3, 20, 2) = .0, (3, 21, 1) = .0, (3, 21, 2) = .0}, datatype = float[8], order = C_order), ( "spaceidx" ) = 1, ( "method" ) = theta, ( "eqnords" ) = [[2, 1], [2, 1]], ( "stages" ) = 1, ( "inputargs" ) = [[diff(f(x, t), t) = 1+1.150367877*(1-2*theta(x, t))*(diff(diff(f(x, t), x), x)+(diff(f(x, t), x))/x)+theta(x, t), 2*(diff(theta(x, t), t)) = 1.150367877*(diff(diff(theta(x, t), x), x))+1.150367877*(diff(theta(x, t), x))/x], {f(1, t) = 0, f(x, 0) = 0, theta(1, t) = 1, theta(x, 0) = 0, (D[1](f))(0, t) = 0, (D[1](theta))(0, t) = 0}, time = t], ( "timeadaptive" ) = false, ( "startup_only" ) = false, ( "multidep" ) = [false, false], ( "errorest" ) = false, ( "solvec1" ) = Vector(42, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0}, datatype = float[8]), ( "IBC" ) = b, ( "solmat_is" ) = 0, ( "dependson" ) = [{1, 2}, {2}], ( "leftwidth" ) = 1, ( "BCS", 2 ) = {[[2, 0, 1], b[2, 0, 1]-1], [[2, 1, 0], b[2, 1, 0]]}, ( "solvec2" ) = Vector(42, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0}, datatype = float[8]), ( "depdords" ) = [[[2, 1], [0, 0]], [[0, 0], [2, 1]]], ( "erroraccum" ) = true, ( "ICS" ) = [0, 0], ( "BCS", 1 ) = {[[1, 0, 1], b[1, 0, 1]], [[1, 1, 0], b[1, 1, 0]]}, ( "rightwidth" ) = 0, ( "t0" ) = 0, ( "solmat_i1" ) = 0, ( "PDEs" ) = [diff(f(x, t), t)-1-(1150367877/1000000000)*(1-2*theta(x, t))*(diff(diff(f(x, t), x), x)+(diff(f(x, t), x))/x)-theta(x, t), 2*(diff(theta(x, t), t))-(1150367877/1000000000)*(diff(diff(theta(x, t), x), x))-(1150367877/1000000000)*(diff(theta(x, t), x))/x], ( "soltimes" ) = Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]), ( "solvec3" ) = Vector(42, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0}, datatype = float[8]), ( "banded" ) = true, ( "linear" ) = false, ( "matrixhf" ) = true, ( "depords" ) = [[2, 1], [2, 1]], ( "allocspace" ) = 21, ( "norigdepvars" ) = 2, ( "solmat_i2" ) = 0, ( "vectorhf" ) = true ] ); if xv = "left" then return INFO["solspace"][1] elif xv = "right" then return INFO["solspace"][INFO["spacepts"]] elif tv = "start" then return INFO["t0"] elif not (type(tv, 'numeric') and type(xv, 'numeric')) then error "non-numeric input" end if; if xv < INFO["solspace"][1] or INFO["solspace"][INFO["spacepts"]] < xv then error "requested %1 value must be in the range %2..%3", INFO["spacevar"], INFO["solspace"][1], INFO["solspace"][INFO["spacepts"]] end if; dary := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); daryt := 0; daryx := 0; dvars := [proc (t, x, u) u[1] end proc]; errest := false; nd := nops(INFO["depvars"]); if dary[nd+1] <> tv then try `pdsolve/numeric/evolve_solution`(INFO, tv) catch: msg := StringTools:-FormatMessage(lastexception[2 .. -1]); if tv < INFO["t0"] then error cat("unable to compute solution for %1<%2:
", msg), INFO["timevar"], INFO["failtime"] else error cat("unable to compute solution for %1>%2:
", msg), INFO["timevar"], INFO["failtime"] end if end try end if; if dary[nd+1] <> tv or dary[nd+2] <> xv then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["solspace"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, dary); if errest then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_t"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryt); `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_x"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryx) end if end if; dary[nd+1] := tv; dary[nd+2] := xv; if dvars = [] then [seq(dary[i], i = 1 .. INFO["norigdepvars"])] else vals := NULL; for i to nops(dvars) do j := eval(dvars[i]); try if errest then vals := vals, evalhf(j(tv, xv, dary, daryt, daryx)) else vals := vals, evalhf(j(tv, xv, dary)) end if catch: userinfo(5, `pdsolve/numeric`, `evalhf failure`); try if errest then vals := vals, j(tv, xv, dary, daryt, daryx) else vals := vals, j(tv, xv, dary) end if catch: vals := vals, undefined end try end try end do; [vals] end if end proc; stype := "2nd"; if nargs = 1 then if args[1] = "left" then return solnproc(0, "left") elif args[1] = "right" then return solnproc(0, "right") elif args[1] = "start" then return solnproc("start", 0) else error "too few arguments to solution procedure" end if elif nargs = 2 then if stype = "1st" then tv := evalf(args[1]); xv := evalf(args[2]) else tv := evalf(args[2]); xv := evalf(args[1]) end if; if not (type(tv, 'numeric') and type(xv, 'numeric')) then if procname <> unknown then return ('procname')(args[1 .. nargs]) else ndsol := pointto(solnproc("soln_procedures")[1]); return ('ndsol')(args[1 .. nargs]) end if end if else error "incorrect arguments to solution procedure" end if; vals := solnproc(tv, xv); vals[1] end proc]

(6)

t := 1;

1

(7)

A1:=x*R(z)*R(z)*(fN)(x, t);

.8692871388*x*fN(x, 1)

(8)

A2:=eval(int(A1, x))+C1;

int(.8692871388*x*fN(x, 1), x)+C1

(9)

W11:=eval(subs(x=0,A2));

Error, (in int) integration range or variable must be specified in the second argument, got 0

 

Find_c1:=solve(W11,C1);

"Find_c1:="

(10)

``


 

Download int_c.mw

Here u is fN(x,t) and t=1.

 

First 376 377 378 379 380 381 382 Last Page 378 of 2216