Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Why does Maple not have texture fill for plotting. Even the old Pascal had it.

Maple Help points out

All Programs>Maple 2017>Classic Worksheet Maple 2017

link that I do not have. Is there a reason for this and how do I fix this?

 

I don't understand whats wrong with my code
r(x):=proc(x) 
    local y
    if (x=1)
    then    
    y=1;
    else 
        y=0;
    end if; 
    return y
    end proc    

Error, reserved word `if` unexpected

I'm also having trouble getting this code to work:

h(x):=proc(x) 
    if (x= infinity)
    then    
    return 1 ;
    else 
        return 0;
        end if; 
    end proc 
theres no error but h(0) just returns h(0) not either value as I would like

Dear All,

How do I use the piecewise function z[k]:=piecewise(k<>0,0,k=0,1) in the loop 

for k from 0 to 10 do

(sum((m^2-1)/z(z[k]+1),m,0..k))

end:

i want the value of z[k] to be automatically used in the loop for the corresponding value of k

Graph the real roots of the equation x3 + (a − 3)3x2 − a2x + a3=0 for a ∈ [0, 1].

 

Sol:=[solve(x^3+(a-3)^3*x^2-a^2*x+a^3=0,x)];

for i from 1 to 3 do

R||i:=unapply(Sol[i],a):

print(plot(R||i(a),a=0..1,numpoints=500)); end od:

 

Is there a simplier way to solve this. If not why did they choose this path?

@Carl Love 

Ages Group JOHOR
0-4 118
5-9 174
10-14 374
15-19 597
20-24 670
25-29 677
30-34 516
35-39 407
40-44 291
45-49 196
50-54 155
55-59 101
60-64 66
65-69 34
70-74 21
>75 9
Grand Total

 

 

 

Can you help me to make a 1D plotting by using this data? 

Dear all

Can we use maple to compute integral using the residual theorem

Compute_integral.mw

 

We can consider the contour a circle that contains one pole (Ipi/2)

Many thanks

 

Hi! I have been trying to calculate the value of theClenshaw derivative. I can get the regular clenshaw to work but not the derivative. I'm going off of the thread (https://scicomp.stackexchange.com/questions/27865/clenshaw-type-recurrence-for-derivative-of-chebyshev-series). (P.s notice I have halfed the A[z+1] term. I have tried both ways but the overall result is wrong so I am guessing something more important is wrong).

This is my code so far

Clenshaw_Dx_1D:=proc(z,C,Nm,s)
local i,k,A,B: global Clen1D_Dx: 

A := Vector(z..Nm+1+z);
B := Vector(z..Nm+1+z);

for k from Nm-1+z by -1 to 1+z do
A[k] := C[k] + 2*s*A[k+1] - A[k+2]:
od:

for k from Nm-1+z by -1 to 1+z do
B[k] := 2*A[k+1] + 2*s*B[k+1] - B[k+2]:
od:
Clen1D_Dx :=  A[z+1]/2 + s*B[1+z] - B[2+z]:

end:

Where z could be 0 or 1 depending on what index your C array starts at. C is the array of chebyshev coefficients of a Chebyshev series appromating u(x) for example. The Chebycoeff1D procedure calculates the Chebyshev coefficients  and the code below calls the procedure for a specific function. Try it with some values of xM, for example 4-10.
 

Chebycoeff1D:=proc(express,Nn,C2,A,B)
local Cfac,fac1x,fac2x,k,K;

fac1x:=Pi/Nn;
  for k from 1 to Nn do 
  Cfac(k):=eval(subs(x=evalf(cos(fac1x*(k-0.5)))*A+B,evalf(express))); 
  od; unassign('k'):                    
  for K from 1 to Nn do
    fac2x:=Pi*(K-1)/Nn;
    C2[K-1]:=(2/Nn)*add(Cfac(k)*evalf(cos(fac2x*(k-0.5))),k=1..Nn);
  od:
end:
nn := 1.0:
Lc := 0.0: Rc := 1.0:
func:=nn*sin(2*Pi*x)+0.5*nn*sin(Pi*x):
Chebycoeff1D(func,xM+1,C,0.5*(Rc-Lc),0.5*(Rc+Lc)):

Once you have the C array call Clenshaw_Dx_1D. For example
 

Clenshaw_Dx_1D(0,C,xM+1,0.0);  # Evalutes f'(x) in the middle of the domain.

Check with

subs(x=0.5, diff(func,x));

The overall "pattern/shape" of the derivative values is correct, just not the amplitude/values. Any help here? Where is the Clenshaw derivative procedure going wrong.

I have a region that can be graphed by A := plots:-inequal([evalc(abs(z)) < 3, evalc(1 < abs(z - 1))], x = -5 .. 5, y = -5 .. 5)

From there, I need to use the transformation 

M := (3 + sqrt(5))/2*(z - x1)/(z - x2) where x1 := (9 - sqrt(45))/2 and x2 := (9 + sqrt(45))/2 

 

How do I do this? Do I need to extract data points from the first graph? Is there an easier way to do this? 

I would like to plot a hyperbola using the polarplot command, such as the following:

polarplot(3/(1-1.5*sin(theta)), coordinateview = [0 .. 10, 0 .. 2*Pi])

But the graph includes the asymptotes, which I would not like to be included. I have tried the discont=true command, but it completely changes the shape of the graph and no longer looks like a hyperbola:

polarplot(3/(1-1.5*sin(theta)), coordinateview = [0 .. 10, 0 .. 2*Pi], discont = true)

 How would I get the hyperbola above to display with no asymptotes?

Thanks

The Library:-RedefineTensorComponent in the physics package has got some serious problems, I guess in the update. It is not assigning the components at the right location for a tensor of rank 4 and above. It is working for tensors of rank 1, 2 and 3. Can someone please look into the issue and help out?

I am attaching the code with an example to indiacate the problem. Redefine.mw

Hi,

Defining variables named H2 or O2 doesn't pose any problem (H__2 for instance), but could it be possible in Maple 2019 to define a variable named H2O2 ?

Thanks in advance

Hello,

I have a question regarding the dsolve function in Maple. I am trying to solve a system of 5 first order ODE's. First I solve the differential equations to arrive at the general solution using the dsolve command. Here Maple already produces very large and slow output while I would actually expect a much more compact output. 

Then I want to evaluate the final solution by using the initial conditons. At this point Maple keeps 'evaluating..' and does not come up with a solution. Only when I fill in all the parameters Maple finds a solution ( still very slow ). However as I want to be able to play with the input parameters after evaluation I want a solution without having to fill in the parameters prior to solving the system.

My question is whether I am presenting the system of ODE's in the right way to Maple. Should I rewrite the system for Maple to be able to produce a more dense solution? Or should I for instance use Laplace Transform to simplify the equations prior to solving?

Please help!

Joa

 

restart;

eq1 := sig_total-sig2(t)-sig3(t)-sig4(t)-sig5(t)+T1*(-(diff(sig2(t), t))-(diff(sig3(t), t))-(diff(sig4(t), t))-(diff(sig5(t), t))) = u1*(diff(eps(t), t));
eq2 := sig2(t)+T2*(diff(sig2(t), t)) = u2*(diff(eps(t), t));
eq3 := sig3(t)+T3*(diff(sig3(t), t)) = u3*(diff(eps(t), t));
eq4 := sig4(t)+T4*(diff(sig4(t), t)) = u4*(diff(eps(t), t));
eq5 := sig5(t)+T5*(diff(sig5(t), t)) = u5*(diff(eps(t), t));

dsolve({eq1, eq2, eq3, eq4, eq5}, {eps(t), sig2(t), sig3(t), sig4(t), sig5(t)});
sig_total := sig_0;
desys := {eq1, eq2, eq3, eq4, eq5}; ic := {eps(0) = sig_0/(E1+E2+E3+E4+E5), sig2(0) = sig_0/(1+(E1+E3+E4+E5)/E2), sig3(0) = sig_0/(1+(E1+E2+E4+E5)/E3), sig4(0) = sig_0/(1+(E1+E3+E2+E5)/E4), sig5(0) = sig_0/(1+(E1+E3+E4+E2)/E5)};

solution := combine(dsolve(desys union ic, {eps(t), sig2(t), sig3(t), sig4(t), sig5(t)})); assign(solution);


E_total := 33112; a := .1; b := .2; c := .15; d := .2; e := .35;


E1 := a*E_total; E2 := b*E_total; E3 := c*E_total; E4 := d*E_total; E5 := e*E_total; T1 := 1; T2 := 10; T3 := 100; T4 := 1000; T5 := 10000; u1 := T1*E1; u2 := T2*E2; u3 := T3*E3; u4 := T4*E4; u5 := T5*E5; sig_0 := 2;


plot(eps(t), t = 0 .. 672, y = 0 .. 0.12e-3);
y := eval(eps(t), t = 672);
evalf(y);
 

Download Maxwell_solve_new_method_5_units.mwMaxwell_solve_new_method_5_units.mw

How do I extract the real solutions of a polynomial that has solutions both in real and complex domains?

How do I work with polynomials over finite fields?  not just the integers mod p but over  https://www.maplesoft.com/support/help/Maple/view.aspx?path=GF

First 604 605 606 607 608 609 610 Last Page 606 of 2218