Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Dear Forum, 

 

I am a new Maple user, and its symbolic prowess is really amazing. So we are trying to interface it with a C library. I want to generate some C code through Maple, and am trying the CodeGeneration package. 

But the default conversion of C(a, b) is b = C language equivalent of expression a.

Now this should be fine for most purposes, but the C library that we are working with, "ACADOToolkit" in this case, requires the equations to be formatted in a certain way. So, I need the following equation in C:

 

f << dot(v) == (u-0.2*v*v)/m

 

Now the LHS part of == is to be hard-coded, but we want to generate the equation on the right using maple. Even if I define an equation as 

eq1:= diff(v(t),t)=(u(t)-0.2*v(t)*v(t))/m(t) and then use C(rhs(eq1)), I get the result in the form of cg = u - 0.2 ...., whereas I want this to be assigned to something else, in this case - "f << dot(v)= ".

 

How can I achieve this ?

 

Thanks 

Chintan Pathak 

Research Scholar, 

University of Washington

 

hello , 

how i can exract value from pdsolve ,i need to use dU(x,R)/dR 

thank you 

 

restart; with(plots)

n := 1/3;

1/3

(1)

Uu := (3*n+1)*(1-R^((n+1)/n))/(n+1);

-(3/2)*R^4+3/2

(2)

eq := Uu*(diff(theta(x, R), x))-4*(diff(R*(diff(theta(x, R), R)), R))/R;

(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R

(3)

IBC := {theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0};

{theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0}

(4)

pds := pdsolve(eq, IBC, numeric);

module () local INFO; export plot, plot3d, animate, value, settings; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; end module

(5)

U := subs(pds:-value(output = listprocedure), theta(x, R));

proc () local tv, xv, solnproc, stype, ndsol, vals; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; Digits := trunc(evalhf(Digits)); solnproc := proc (tv, xv) local INFO, errest, nd, dvars, dary, daryt, daryx, vals, msg, i, j; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; table( [( "soln_procedures" ) = array( 1 .. 1, [( 1 ) = (18446744074366926358)  ] ) ] ) INFO := table( [( "timestep" ) = 0.500000000000000e-1, ( "IBC" ) = b, ( "spaceidx" ) = 2, ( "fdepvars" ) = [theta(x, R)], ( "dependson" ) = [{1}], ( "eqnords" ) = [[1, 2]], ( "intspace" ) = Matrix(21, 1, {(1, 1) = .0, (2, 1) = .0, (3, 1) = .0, (4, 1) = .0, (5, 1) = .0, (6, 1) = .0, (7, 1) = .0, (8, 1) = .0, (9, 1) = .0, (10, 1) = .0, (11, 1) = .0, (12, 1) = .0, (13, 1) = .0, (14, 1) = .0, (15, 1) = .0, (16, 1) = .0, (17, 1) = .0, (18, 1) = .0, (19, 1) = .0, (20, 1) = .0, (21, 1) = .0}, datatype = float[8], order = C_order), ( "solvec2" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "allocspace" ) = 21, ( "solmat_ne" ) = 0, ( "depords" ) = [[1, 2]], ( "BCS", 1 ) = {[[1, 0, 1], b[1, 0, 1]], [[1, 1, 0], b[1, 1, 0]]}, ( "spacepts" ) = 21, ( "solvec3" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "autonomous" ) = true, ( "vectorproc" ) = proc (v, vp, vpp, t, x, k, h, n, vec) local _s1, _s2, _s3, _s4, _s5, _s6, xi; _s3 := 4*k; _s4 := -3*h^2; _s5 := 2*h*k; _s6 := 2*k*h^2; vec[1] := 0; vec[n] := 0; for xi from 2 to n-1 do _s1 := -vp[xi-1]+vp[xi+1]; _s2 := vp[xi-1]-2*vp[xi]+vp[xi+1]; vec[xi] := (_s4*vp[xi]*x[xi]^5+_s2*_s3*x[xi]-_s4*vp[xi]*x[xi]+_s1*_s5)/(_s6*x[xi]) end do end proc, ( "timeidx" ) = 1, ( "extrabcs" ) = [0], ( "pts", R ) = [0, 1], ( "solvec5" ) = 0, ( "timevar" ) = x, ( "t0" ) = 0, ( "solmat_v" ) = Vector(147, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0, (43) = .0, (44) = .0, (45) = .0, (46) = .0, (47) = .0, (48) = .0, (49) = .0, (50) = .0, (51) = .0, (52) = .0, (53) = .0, (54) = .0, (55) = .0, (56) = .0, (57) = .0, (58) = .0, (59) = .0, (60) = .0, (61) = .0, (62) = .0, (63) = .0, (64) = .0, (65) = .0, (66) = .0, (67) = .0, (68) = .0, (69) = .0, (70) = .0, (71) = .0, (72) = .0, (73) = .0, (74) = .0, (75) = .0, (76) = .0, (77) = .0, (78) = .0, (79) = .0, (80) = .0, (81) = .0, (82) = .0, (83) = .0, (84) = .0, (85) = .0, (86) = .0, (87) = .0, (88) = .0, (89) = .0, (90) = .0, (91) = .0, (92) = .0, (93) = .0, (94) = .0, (95) = .0, (96) = .0, (97) = .0, (98) = .0, (99) = .0, (100) = .0, (101) = .0, (102) = .0, (103) = .0, (104) = .0, (105) = .0, (106) = .0, (107) = .0, (108) = .0, (109) = .0, (110) = .0, (111) = .0, (112) = .0, (113) = .0, (114) = .0, (115) = .0, (116) = .0, (117) = .0, (118) = .0, (119) = .0, (120) = .0, (121) = .0, (122) = .0, (123) = .0, (124) = .0, (125) = .0, (126) = .0, (127) = .0, (128) = .0, (129) = .0, (130) = .0, (131) = .0, (132) = .0, (133) = .0, (134) = .0, (135) = .0, (136) = .0, (137) = .0, (138) = .0, (139) = .0, (140) = .0, (141) = .0, (142) = .0, (143) = .0, (144) = .0, (145) = .0, (146) = .0, (147) = .0}, datatype = float[8], order = C_order, attributes = [source_rtable = (Matrix(21, 7, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (10, 7) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (11, 7) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (12, 7) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (14, 7) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (15, 7) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (16, 7) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (17, 7) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (18, 7) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (19, 7) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (20, 7) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0, (21, 7) = .0}, datatype = float[8], order = C_order))]), ( "indepvars" ) = [x, R], ( "maxords" ) = [1, 2], ( "solvec1" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "startup_only" ) = false, ( "solvec4" ) = 0, ( "explicit" ) = false, ( "solmatrix" ) = Matrix(21, 7, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (10, 7) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (11, 7) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (12, 7) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (14, 7) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (15, 7) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (16, 7) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (17, 7) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (18, 7) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (19, 7) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (20, 7) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0, (21, 7) = .0}, datatype = float[8], order = C_order), ( "depvars" ) = [theta], ( "solmat_is" ) = 0, ( "adjusted" ) = false, ( "matrixhf" ) = true, ( "norigdepvars" ) = 1, ( "stages" ) = 1, ( "theta" ) = 1/2, ( "ICS" ) = [1], ( "multidep" ) = [false, false], ( "soltimes" ) = Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]), ( "depeqn" ) = [1], ( "method" ) = theta, ( "depshift" ) = [1], ( "depdords" ) = [[[1, 2]]], ( "matrixproc" ) = proc (v, vp, vpp, t, x, k, h, n, mat) local _s1, _s2, _s3, xi; _s1 := h^2; _s2 := -(3/2)/k; _s3 := (1/2)*(8*k+3*_s1)/(k*h^2); mat[3] := -(3/2)/h; mat[4] := 2/h; mat[5] := -(1/2)/h; mat[7*n-4] := 1; for xi from 2 to n-1 do mat[7*xi-4] := _s2*x[xi]^4+_s3; mat[7*xi-5] := (h-2*x[xi])/(_s1*x[xi]); mat[7*xi-3] := -(h+2*x[xi])/(_s1*x[xi]) end do end proc, ( "solution" ) = Array(1..3, 1..21, 1..1, {(1, 1, 1) = .0, (1, 2, 1) = .0, (1, 3, 1) = .0, (1, 4, 1) = .0, (1, 5, 1) = .0, (1, 6, 1) = .0, (1, 7, 1) = .0, (1, 8, 1) = .0, (1, 9, 1) = .0, (1, 10, 1) = .0, (1, 11, 1) = .0, (1, 12, 1) = .0, (1, 13, 1) = .0, (1, 14, 1) = .0, (1, 15, 1) = .0, (1, 16, 1) = .0, (1, 17, 1) = .0, (1, 18, 1) = .0, (1, 19, 1) = .0, (1, 20, 1) = .0, (1, 21, 1) = .0, (2, 1, 1) = .0, (2, 2, 1) = .0, (2, 3, 1) = .0, (2, 4, 1) = .0, (2, 5, 1) = .0, (2, 6, 1) = .0, (2, 7, 1) = .0, (2, 8, 1) = .0, (2, 9, 1) = .0, (2, 10, 1) = .0, (2, 11, 1) = .0, (2, 12, 1) = .0, (2, 13, 1) = .0, (2, 14, 1) = .0, (2, 15, 1) = .0, (2, 16, 1) = .0, (2, 17, 1) = .0, (2, 18, 1) = .0, (2, 19, 1) = .0, (2, 20, 1) = .0, (2, 21, 1) = .0, (3, 1, 1) = .0, (3, 2, 1) = .0, (3, 3, 1) = .0, (3, 4, 1) = .0, (3, 5, 1) = .0, (3, 6, 1) = .0, (3, 7, 1) = .0, (3, 8, 1) = .0, (3, 9, 1) = .0, (3, 10, 1) = .0, (3, 11, 1) = .0, (3, 12, 1) = .0, (3, 13, 1) = .0, (3, 14, 1) = .0, (3, 15, 1) = .0, (3, 16, 1) = .0, (3, 17, 1) = .0, (3, 18, 1) = .0, (3, 19, 1) = .0, (3, 20, 1) = .0, (3, 21, 1) = .0}, datatype = float[8], order = C_order), ( "totalwidth" ) = 7, ( "rightwidth" ) = 0, ( "solmat_i2" ) = 0, ( "minspcpoints" ) = 4, ( "erroraccum" ) = true, ( "eqndep" ) = [1], ( "errorest" ) = false, ( "banded" ) = true, ( "solspace" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = 1.0}, datatype = float[8]), ( "solmat_i1" ) = 0, ( "timeadaptive" ) = false, ( "spacestep" ) = 0.500000000000000e-1, ( "initialized" ) = false, ( "vectorhf" ) = true, ( "linear" ) = true, ( "spacevar" ) = R, ( "periodic" ) = false, ( "spaceadaptive" ) = false, ( "mixed" ) = false, ( "inputargs" ) = [(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R, {theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0}], ( "bandwidth" ) = [1, 3], ( "PDEs" ) = [(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R], ( "leftwidth" ) = 1 ] ); if xv = "left" then return INFO["solspace"][1] elif xv = "right" then return INFO["solspace"][INFO["spacepts"]] elif tv = "start" then return INFO["t0"] elif not (type(tv, 'numeric') and type(xv, 'numeric')) then error "non-numeric input" end if; if xv < INFO["solspace"][1] or INFO["solspace"][INFO["spacepts"]] < xv then error "requested %1 value must be in the range %2..%3", INFO["spacevar"], INFO["solspace"][1], INFO["solspace"][INFO["spacepts"]] end if; dary := Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]); daryt := 0; daryx := 0; dvars := []; errest := false; nd := nops(INFO["depvars"]); if dary[nd+1] <> tv then try `pdsolve/numeric/evolve_solution`(INFO, tv) catch: msg := StringTools:-FormatMessage(lastexception[2 .. -1]); if tv < INFO["t0"] then error cat("unable to compute solution for %1<%2:
", msg), INFO["timevar"], INFO["failtime"] else error cat("unable to compute solution for %1>%2:
", msg), INFO["timevar"], INFO["failtime"] end if end try end if; if dary[nd+1] <> tv or dary[nd+2] <> xv then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["solspace"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, dary); if errest then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_t"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryt); `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_x"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryx) end if end if; dary[nd+1] := tv; dary[nd+2] := xv; if dvars = [] then [seq(dary[i], i = 1 .. INFO["norigdepvars"])] else vals := NULL; for i to nops(dvars) do j := eval(dvars[i]); try if errest then vals := vals, evalhf(j(tv, xv, dary, daryt, daryx)) else vals := vals, evalhf(j(tv, xv, dary)) end if catch: userinfo(5, `pdsolve/numeric`, `evalhf failure`); try if errest then vals := vals, j(tv, xv, dary, daryt, daryx) else vals := vals, j(tv, xv, dary) end if catch: vals := vals, undefined end try end try end do; [vals] end if end proc; stype := "1st"; if nargs = 1 then if args[1] = "left" then return solnproc(0, "left") elif args[1] = "right" then return solnproc(0, "right") elif args[1] = "start" then return solnproc("start", 0) else error "too few arguments to solution procedure" end if elif nargs = 2 then if stype = "1st" then tv := evalf(args[1]); xv := evalf(args[2]) else tv := evalf(args[2]); xv := evalf(args[1]) end if; if not (type(tv, 'numeric') and type(xv, 'numeric')) then if procname <> unknown then return ('procname')(args[1 .. nargs]) else ndsol := pointto(solnproc("soln_procedures")[1]); return ('ndsol')(args[1 .. nargs]) end if end if else error "incorrect arguments to solution procedure" end if; vals := solnproc(tv, xv); vals[1] end proc

(6)

NULL

gg := U(x, 1):

NULL

thm := int(U(x, R)*Uu, R = 0 .. 1):

 

 

NULL

 

Download U(R)_numériqueg2.mw

Dear all

 

I have a confusion between these symbol

Sum , add and sum

If we consider u(n) is a sequence and n integer

and what is the difference between 

sum( u(n),n=0..infinity)

Sum(u(n),n=0..infinity)

and sum('u(n)', n=0..infinity)

Many thanks

HI all,

 

I have 

> sol2 := dsolve({odesys, H(0) = 4995, R(0) = 65000, W(0) = 102000, l(0) = 96000}, numeric, method = rosenbrock);
print(`output redirected...`); 
proc(x_rosenbrock) ... end;

 

I want to have a list of my solutions, t, H(t), R(t), W(t), l(t) that I can put into a spreadsheet (.csv, .txt, etc.), for 600 timesteps. 

 

There are some answers out there, but I am confused by them, and have not been able to make it work.

 

Thanks!

 

How can I simplify $\sqrt{1−r^2\exp(2i\theta)}$ in Maple. I could do it by hand but I need this type of simplification later for far more complicated expressions.  I allready tried to enter this as a complex number using II, but simplify(...,'symbolic') didn't simplify this expression. Any suggestion?

I have a nonlinear function Q(a,b,c,d,x,y) and I'd like to get the optimum (x*,y*) for different values of (a,b,c,d). The usual sintax:

NLPSolve(Q(10, 1, 5, 2, x,y), x= 0 .. 50, y = 0 .. 50, initialpoint = {x = 2,y= .5}, assume = nonnegative) does not work when Q contains numerical integration, that is evalf (Int). I have no problem with the definite integral evalf(int). The problem is that most of the cases required numerical integration so I need the former expression.

I'd appreciate very much if someone could help me.

Hi,

how can I check in maple if my variable P is positive (always or only for some certain conditions)

P=(exp(a-1)-exp(g-1))*(b*d*(f-g)-b*g*(a-e)-g*(a-c)*(a-e)))/((a-g)*b*d) + exp(g-1)*(((a-c)*(a-e))/b*d + (a-e)/d + 1)

with assumptions

a>0,b>0,c>0,d>0,e>0,f>0,g>0 and a>c,e,g

I need to prove that P is always positive with that assumptions, how?

While performing integration of some expessions I bumped into a strange problem. My expession consists of quite a lot of terms, but here I present the susbset of only 2. If I integrate it as a whole maple does not want to solve it, and leaves it as there was no closed expression to this integral. But if I split this sum and integrate the parts, it all works fine. What is happening here? What do I miss? I used simplify and allvalues but didn't change a thing...

Is there a way to split my terms into list, integrate one by one and they recreate the solution by summing the parts? Its a bit of a workaround, but surely better that doing it manually (I have around 50 terms). I use Maple 2015

Thanks,

Jeremi

Good morning everybody.

I have tried Explore to draw plots in an interactive way.

The function I want to draw (plot3d) is automatically constructed by a specific code, as well as the names of the parameters it depends on. These are of the form P||1, P||2, ...P||N (N is an integer determined during the construction)

... but I did not succeed !

After some investigations I was able to reduced the problem to the following one

N  := 2:
F  := add(P||k * x^k, k=0..N):
G := [seq(P||k=-1.0 .. 1.0, k=0..N)]:
Explore(plot(F, x=0..1), parameters=G)

The result is the classical imbedded window with a plot of -1-x_x^2 and three sliders below.
But as soon as I push anu of them the plot disappears and connot be recoverd.


But the following sequence seems to work as expected

N  := 2:
F  := add(P__k * x^k, k=0..N):
G := [seq(P__k=-1.0 .. 1.0, k=0..N)]:
Explore(plot(F, x=0..1), parameters=G)



Before changing my code, could you please confirm me that parameter names such that P||k are not correctly accounted for by Explore ?


Auxiliary question : more generally, are there points which I have to count carefully when I use the P||k construction ?

Thanks in advance

Hello,

a=number      b=number

=maple("Qm:=x->(diff(KelvinBei(0,x),x)*psi2(x)-(diff(KelvinBer(0,x),x)*psi1(x)))/&1";B11)

=maple("Qv:=x->(&1*psi2(x)-(&2*psi1(x)))/(&3*&4)";B6;B7;B2;B11)

=maple("Fm:=x->(Qv(x)+(&1*Qm(x)))/2";B3)

I need abs(max(Fm(x))) and abs(min(Fm(x))) values of function Fm(x), locals, for a<x<b in excel.

Now I use a vector to do this, but I need an exact values not an approximation of a fuction evaluated with n values of x.

what I do:

=maple("seq(i,i=&1..&2,&3)";N2;N3;N4)

=maple("A:=&1";N5)

=maple("G:=map(g->evalf(eval(Fm(x),x=g)),[A])")

=maple("max(abs~(G))")

Someone can help me??

Hello,

 

I tried to plot the problem presented below:

restart; with(plots); C := setcolors(); with(LinearAlgebra);

formula1 := 2.6*BodyWeight*abs(sin(4*Pi*t));
2.6 BodyWeight |sin(4 Pi t)|
BodyWeight := 80*9.81;
plot(formula1, t = 0 .. 2);


eq2 := formula1-SpringConstant*y(t)-DampConstant*(diff(y(t), t)) = Mass*(diff(y(t), `$`(t, 2)));
2040.480 |sin(4 Pi t)| - SpringConstant y(t)

/ d \ / d / d \\
- DampConstant |--- y(t)| = Mass |--- |--- y(t)||
\ dt / \ dt \ dt //
DampConstant := 50;
50
Mass := .200;
Springt := 200;
200
SpringConstant := Youngsmodulus*Surface/DeltaLength;
DeltaLength := 0.2e-1-y(t);
Surface := .15;
Youngsmodulus := 6.5*10^6/(t+1)+6.5*10^6;
plot(Youngsmodulus, t = 0 .. 10000);

eq2;
2040.480 |sin(4 Pi t)|

/ 6 \
|6.5000000 10 6|
0.15 |------------- + 6.5000000 10 | y(t)
\ t + 1 / / d \
- ----------------------------------------- - 50 |--- y(t)| =
0.02 - y(t) \ dt /

/ d / d \\
0.200 |--- |--- y(t)||
\ dt \ dt //

incs := y(0) = 0, (D(y))(0) = 0;
eq4 := dsolve({eq2, incs}, y(t), type = numeric, method = lsode[backfull], maxfun = 0);
proc(x_lsode) ... end;

plots:-odeplot(eq4, [t, y(t)], 0 .. 5);

 When I try to plot it beyond t=5, Maple gives the following error:

Warning, could not obtain numerical solution at all points, plot may be incomplete

Does anyone know how to plot it even further?

 

 

vz := 2*(-eta^2+1);

D_im := .22;

r0 := 1;

pde := diff(vz*Y(eta, z), z)-D_im*((diff(eta*(diff(Y(eta, z), eta)), eta))/eta+diff(Y(eta, z), `$`(z, 2)))/r0 = 0;

pde := expand(%);

ibc := [Y(1, z) = 0, (D[1](Y))(0, z) = 0, Y(eta, 0) = 1, (D[2](Y))(eta, 0) = 0];

sol := pdsolve(pde, ibc, numeric, time = z, range = 0 .. 1);

pds := sol:-value(z = 0, output = listprocedure);

sol:-plot(z = 0.1e-3, numpoints = 50, color = blue, view = 0 .. 1)

So I was trying to solve this conservation equation for the radial coordinate eta and the z coordinate being treated as time. The flow is in z direction. Now unfortunately it is diverging. Not sure why though. What am I doing wrong?

Here is ODE

restart:
with(plots):
Digits:=35:

ini1:=D(x)(0)=0,x(0)=1:
dsys:=diff(x(t),t,t)+(x(t)-2)*diff(x(t),t)+5*x(t)=0;
dsol1 :=dsolve({dsys,ini1},numeric,abserr=1e-9, relerr=1e-8,maxfun=0);
plots:-odeplot(dsol1,[[t,x(t)]],0..20,axes=boxed,color=black,linestyle=1,tickmarks=[6, 6],axes=boxed,titlefont=[SYMBOL,12]);

1-Why when i run for long time>1.5 give me error

2- how to plot phase plot of x'(t) against x(t)

Any comments will be helpful

> restart;
> a := -10; b := 10; ps := seq(plot([i, t, t = -20 .. 20], x = -10 .. 10, y = -20 .. 20, color = red, style = point), i = a .. b);

plots[display](ps, insequence = true); p := plots[display](ps, insequence = true);

 

restart:
with(plots):
y=sin(x);
p:=implicitplot(y=sin(x),x=-10..10,y=-2..2,thickness=4,color=red,scaling=constrained,numpoints=1000):
plots[display](p);

 

y=sin(3*x);
p0:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=CROSS):
p1:=implicitplot(y=sin(3*x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p1);
y=sin(1/3*x);
p11:=implicitplot(y=sin(1/3*x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p11);

 

 

y=2*sin(x);
p2:=implicitplot(y=2*sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p2);
y=1/2*sin(x);
p22:=implicitplot(y=1/2*sin(x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p22);

 

y=2+sin(x);
p3:=implicitplot(y=2+sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p3);
y=sin(x)-2;
p33:=implicitplot(y=sin(x)-2,x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p33);

y=sin(x+2);
p4:=implicitplot(y=sin(x+2),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p4);
y=sin(x-2);
p44:=implicitplot(y=sin(x-2),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p44);

y=-sin(x);
p7:=implicitplot(y=-sin(x),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p0,p7);
y=sin(-x);
p77:=implicitplot(y=sin(-x),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p0,p77);

 

y=abs(sin(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p5:=implicitplot(y=abs(sin(x)),x=-10..10,y=-5..5,thickness=4,color=blue,numpoints=10000):
plots[display](p00,p5);
plots[display](p5,scaling=constrained);

y=sin(abs(x));
p00:=implicitplot(y=sin(x),x=-10..10,y=-5..5,thickness=3,color=red,scaling=constrained,numpoints=1000,linestyle=2,style=POINT,symbol=BOX):
p6:=implicitplot(y=sin(abs(x)),x=-10..10,y=-5..5,thickness=4,color=navy,numpoints=10000):
plots[display](p00,p6);
plots[display](p6,scaling=constrained);

 

 

I am a new user with Maple, and was using it as a documentation. But, can't fully see the file created a day before. 

The file opens but most of the content is gone and gives the error message.

There were problems during the loading process, Your worksheet may become incomplete

Googled a bit yet couldn't solve it :/ 

Is there any way to fix this?

Why_Mcausal_not_helping.mw

 

 

 

 

First 1092 1093 1094 1095 1096 1097 1098 Last Page 1094 of 2224