Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

rather than last time saved file result?

When I open maple script file, it display the result which file created.

however, not the latest result 

it need to move cursor to the end of script and press enter again.


I wish to delete the rows that have imaginery components from my results Matrix. Have tried many variants of for loops etc.

restart

``

``

interface(displayprecision = 3)

3

(1)

(2)

``

interface(rtablesize = 81)

10

(3)

``

``

Ans := Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

Ans := Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

(4)

``

(5)

"seq( if 'has'(Ans(n,1..15) ,Im<>0) then DeleteRow (Ans(n) )end if,n=2..17)"

Error, invalid argument sequence

"seq( if 'has'(Ans(n,1..15) ,Im<>0) then DeleteRow (Ans(n) )end if,n=2..17)"

 

Ans

Matrix(17, 15, {(1, 1) = `-`, (1, 2) = u0, (1, 3) = u1, (1, 4) = u2, (1, 5) = u3, (1, 6) = P*x, (1, 7) = Py, (1, 8) = Pz, (1, 9) = g0, (1, 10) = g1, (1, 11) = g2, (1, 12) = g3, (1, 13) = u^2, (1, 14) = g^2, (1, 15) = P, (2, 1) = 1, (2, 2) = -.516501806300516366332207827845271720295699875, (2, 3) = .157087667438024041386330713987768482051008262*I, (2, 4) = .113781789011852812312696505223578179747798329*I, (2, 5) = -.877979905726868500805204485093148911811362591, (2, 6) = -45.5583959992909648360043286735679679113587631, (2, 7) = -49.2104104577498887775211368820566392860712299, (2, 8) = -893.5067837*I, (2, 9) = -.866146675707479268632063873487527071333386044, (2, 10) = 0.392015486681650570173437868256055772345022977e-1*I, (2, 11) = -.1411657646*I, (2, 12) = .520820958366521078324036803446408915170112964, (2, 13) = .999999999999999999999999999999999999997268842, (2, 14) = .999999999999999999999999999999999999974976375, (2, 15) = 890.986610791943203054869284606448158021303178*I, (3, 1) = 0, (3, 2) = -.516501806300516366332207827845271720295699875, (3, 3) = -.1570876674*I, (3, 4) = -.1137817890*I, (3, 5) = -.877979905726868500805204485093148911811362591, (3, 6) = 0, (3, 7) = 0, (3, 8) = 0, (3, 9) = 0, (3, 10) = 0, (3, 11) = 0, (3, 12) = 0, (3, 13) = 0, (3, 14) = 0, (3, 15) = 0, (4, 1) = 2, (4, 2) = 1.37465842397864539997343521056744950913464373, (4, 3) = -.4720070715*I, (4, 4) = 1.04887251334709968989772260444378754238846281*I, (4, 5) = -.658208509656740520048240372814155977066034431, (4, 6) = -139.935858043713569770172241394940432701557933, (4, 7) = 1009.16689416507143999697715965318783801532828, (4, 8) = 35.050637050173061427545252165933711014164793*I, (4, 9) = -1.081758215*I, (4, 10) = -.805172606177376737844957657938233921696306905, (4, 11) = 1.28822588438750284892199202326992770781607054, (4, 12) = .370982506039653923963789326359229665746676298*I, (4, 13) = 1.00000000000000000000000000000000000000004448, (4, 14) = 1.00000000000000000000000000000000000002308483, (4, 15) = 1018.21968036744599747318369866423941656487034, (5, 1) = 0, (5, 2) = 1.37465842397864539997343521056744950913464373, (5, 3) = .472007071498869469711464480852290076392886818*I, (5, 4) = -1.048872513*I, (5, 5) = -.658208509656740520048240372814155977066034431, (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (5, 9) = 0, (5, 10) = 0, (5, 11) = 0, (5, 12) = 0, (5, 13) = 0, (5, 14) = 0, (5, 15) = 0, (6, 1) = 3, (6, 2) = .888607277416217966051928947403779522572804242, (6, 3) = -.106822611437208274601612056689973427508887756, (6, 4) = .227628951666705815052303897780904267397418654, (6, 5) = -.383602784885339918445575993340862111408067307, (6, 6) = -33.2619224164850716022540679651061384838837392, (6, 7) = -70.5221377558306752001316338827006032187340768, (6, 8) = 520.235208378859672763343647578296600919428272, (6, 9) = .403127155352863813666160452061241985268802920, (6, 10) = -.229875128453580499649930605383626391667210087, (6, 11) = -.249025243344440313757976839460134436215711022, (6, 12) = .850077849442508503270095108095866473994329709, (6, 13) = .999999999999999999999999999999999999999999990, (6, 14) = 1.00000000000000000000000000000000000000001494, (6, 15) = 526.046005054204528169704406776278260629227147, (7, 1) = 0, (7, 2) = .888607277416217966051928947403779522572804242, (7, 3) = .106822611437208274601612056689973427508887756, (7, 4) = -.227628951666705815052303897780904267397418654, (7, 5) = -.383602784885339918445575993340862111408067307, (7, 6) = 0, (7, 7) = 0, (7, 8) = 0, (7, 9) = 0, (7, 10) = 0, (7, 11) = 0, (7, 12) = 0, (7, 13) = 0, (7, 14) = 0, (7, 15) = 0, (8, 1) = 4, (8, 2) = .771395089635626888037058585282289072153672569, (8, 3) = -.251315638632409886572894533969222074089643996, (8, 4) = .494467079738422222368894560870844350373447897, (8, 5) = -.311917252680552965184041884461266972741091408, (8, 6) = -35.3773974809076144493333628813387306219066392, (8, 7) = -261.955262605587133808935304231369552994540307, (8, 8) = 267.817639506339708440220037786669249266668237, (8, 9) = .542590138401669145144489319765760630956089296, (8, 10) = -.207306657051038538831939399741694104211987188, (8, 11) = -.745192226522038608473536679495983480516139685, (8, 12) = .327579665398674149197429570862493923635921752, (8, 13) = 1.00000000000000000000000000000000000000000004, (8, 14) = 1.00000000000000000000000000000000000000000070, (8, 15) = 376.295638946336949362327994692547262453058894, (9, 1) = 0, (9, 2) = .771395089635626888037058585282289072153672569, (9, 3) = .251315638632409886572894533969222074089643996, (9, 4) = -.494467079738422222368894560870844350373447897, (9, 5) = -.311917252680552965184041884461266972741091408, (9, 6) = 0, (9, 7) = 0, (9, 8) = 0, (9, 9) = 0, (9, 10) = 0, (9, 11) = 0, (9, 12) = 0, (9, 13) = 0, (9, 14) = 0, (9, 15) = 0, (10, 1) = 5, (10, 2) = -.771395089635626888037058585282289072153672569, (10, 3) = -.251315638632409886572894533969222074089643996, (10, 4) = .494467079738422222368894560870844350373447897, (10, 5) = .311917252680552965184041884461266972741091408, (10, 6) = -35.3773974809076144493333628813387306219066392, (10, 7) = -261.955262605587133808935304231369552994540307, (10, 8) = -267.817639506339708440220037786669249266668237, (10, 9) = .542590138401669145144489319765760630956089296, (10, 10) = .207306657051038538831939399741694104211987188, (10, 11) = .745192226522038608473536679495983480516139685, (10, 12) = .327579665398674149197429570862493923635921752, (10, 13) = 1.00000000000000000000000000000000000000000004, (10, 14) = 1.00000000000000000000000000000000000000000070, (10, 15) = 376.295638946336949362327994692547262453058894, (11, 1) = 0, (11, 2) = -.771395089635626888037058585282289072153672569, (11, 3) = .251315638632409886572894533969222074089643996, (11, 4) = -.494467079738422222368894560870844350373447897, (11, 5) = .311917252680552965184041884461266972741091408, (11, 6) = 0, (11, 7) = 0, (11, 8) = 0, (11, 9) = 0, (11, 10) = 0, (11, 11) = 0, (11, 12) = 0, (11, 13) = 0, (11, 14) = 0, (11, 15) = 0, (12, 1) = 6, (12, 2) = -.888607277416217966051928947403779522572804242, (12, 3) = -.106822611437208274601612056689973427508887756, (12, 4) = .227628951666705815052303897780904267397418654, (12, 5) = .383602784885339918445575993340862111408067307, (12, 6) = -33.2619224164850716022540679651061384838837392, (12, 7) = -70.5221377558306752001316338827006032187340768, (12, 8) = -520.235208378859672763343647578296600919428272, (12, 9) = .403127155352863813666160452061241985268802920, (12, 10) = .229875128453580499649930605383626391667210087, (12, 11) = .249025243344440313757976839460134436215711022, (12, 12) = .850077849442508503270095108095866473994329709, (12, 13) = .999999999999999999999999999999999999999999990, (12, 14) = 1.00000000000000000000000000000000000000001494, (12, 15) = 526.046005054204528169704406776278260629227147, (13, 1) = 0, (13, 2) = -.888607277416217966051928947403779522572804242, (13, 3) = .106822611437208274601612056689973427508887756, (13, 4) = -.227628951666705815052303897780904267397418654, (13, 5) = .383602784885339918445575993340862111408067307, (13, 6) = 0, (13, 7) = 0, (13, 8) = 0, (13, 9) = 0, (13, 10) = 0, (13, 11) = 0, (13, 12) = 0, (13, 13) = 0, (13, 14) = 0, (13, 15) = 0, (14, 1) = 7, (14, 2) = -1.37465842397864539997343521056744950913464373, (14, 3) = -.4720070715*I, (14, 4) = 1.04887251334709968989772260444378754238846281*I, (14, 5) = .658208509656740520048240372814155977066034431, (14, 6) = -139.935858043713569770172241394940432701557933, (14, 7) = 1009.16689416507143999697715965318783801532828, (14, 8) = -35.05063705*I, (14, 9) = -1.081758215*I, (14, 10) = .805172606177376737844957657938233921696306905, (14, 11) = -1.28822588438750284892199202326992770781607054, (14, 12) = .370982506039653923963789326359229665746676298*I, (14, 13) = 1.00000000000000000000000000000000000000004448, (14, 14) = 1.00000000000000000000000000000000000002308483, (14, 15) = 1018.21968036744599747318369866423941656487034, (15, 1) = 0, (15, 2) = -1.37465842397864539997343521056744950913464373, (15, 3) = .472007071498869469711464480852290076392886818*I, (15, 4) = -1.048872513*I, (15, 5) = .658208509656740520048240372814155977066034431, (15, 6) = 0, (15, 7) = 0, (15, 8) = 0, (15, 9) = 0, (15, 10) = 0, (15, 11) = 0, (15, 12) = 0, (15, 13) = 0, (15, 14) = 0, (15, 15) = 0, (16, 1) = 8, (16, 2) = .516501806300516366332207827845271720295699875, (16, 3) = .157087667438024041386330713987768482051008262*I, (16, 4) = .113781789011852812312696505223578179747798329*I, (16, 5) = .877979905726868500805204485093148911811362591, (16, 6) = -45.5583959992909648360043286735679679113587631, (16, 7) = -49.2104104577498887775211368820566392860712299, (16, 8) = 893.506783720169698656724304667952267191687315*I, (16, 9) = -.866146675707479268632063873487527071333386044, (16, 10) = -0.3920154867e-1*I, (16, 11) = .141165764599481508540163197537118257205129796*I, (16, 12) = .520820958366521078324036803446408915170112964, (16, 13) = .999999999999999999999999999999999999997268842, (16, 14) = .999999999999999999999999999999999999974976375, (16, 15) = 890.986610791943203054869284606448158021303178*I, (17, 1) = 0, (17, 2) = .516501806300516366332207827845271720295699875, (17, 3) = -.1570876674*I, (17, 4) = -.1137817890*I, (17, 5) = .877979905726868500805204485093148911811362591, (17, 6) = 0, (17, 7) = 0, (17, 8) = 0, (17, 9) = 0, (17, 10) = 0, (17, 11) = 0, (17, 12) = 0, (17, 13) = 0, (17, 14) = 0, (17, 15) = 0})

(6)

``

``

 

Download matrix_imaginery_elements.mw

I have the following command.

with(StringTools);
message := `Kajian ini mempunyai tiga objektif pertama seperti yang ditunjukkan dalam bahagian 1.11. Objektif tersebut harus`;

m := convert(message, bytes);

block := map(convert, m, binary);
block := map2(nprintf, "%08d", block);
block := map(proc (t) options operator, arrow; [seq(parse(convert(t, string)[i]), i = 1 .. length(convert(t, string)))] end proc, block);

block := [[0, 1, 0, 0, 1, 0, 1, 1], [0, 1, 1, 0, 0, 0, 0, 1], [0, 1, 1, 0, 1, 0, 1, 0], [0, 1, 1, 0, 1, 0, 0, 1], ........]

with(Bits);
for i to l do
for j from 3 to 7 do
block[i][j] := 1-block[i][j];  //used to flip bit in between 3rd to 7th bit in a block
end do;
c_block[i] := block[i];
end do;
c_block1 := [seq(c_block[i], i = 1 .. l)];

Error, assigning to a long list, please use Arrays

May i know how to solve this problem? I need to change some bit in a list but receive error when there is more than 100 elements in a list. Thank you.

I'm an educator (physicist) who has migrated to Maple because of the lower "activation barrier" to get something of interest produced by the student. The students in my courses are exposed to several language (Python, C++, Java) and mathematical systems (Mathematica, Maple, MATLAB.) Many claim that unless forced to used a particular language or system, their first choice is Python and Maple for the reason I cite. 

As a consequence, it is my experience that students truly perfer the math-like appearance of the 2-D Math notation as opposed to the Maple notation. They see it as more natural - again with a lower activation barrier. Hence I see no reason to change. However, I would be interested in reasons why it might be beneficial.

My ultimate question is: do I start them with worksheet mode or documents mode? I'm use to worksheet mode and have found the call and response method easy for them to understand. But document mode has many valuable benefits. Is it worth the increase in learning (and frustration) for the benefits if the students use the software only a few times per semester? Or for some, every week?

I would be interested in hearing about the experiences of other educators.

 

Greetings to all. I am writing today to share a personal story / exploration using Maple of an algorithm from the history of combinatorics. The problem here is to count the number of strings over a certain alphabet which consist of some number of letters and avoid a set of patterns (these patterns are strings as opposed to regular expressions.) This counting operation is carried out using rational generating functions that encode the number of admissible strings of length n in the coefficients of their series expansions. The modern approach to this problem uses the Goulden-Jackson method which is discussed, including a landmark Maple implementation from a paper by D. Zeilberger and J. Noonan, at the following link at math.stackexchange.com (Goulden-Jackson has its own website, all the remaining software described in the following discussion is available at the MSE link.) The motivation for this work was a question at the MSE link about the number of strings over a two-letter alphabet that avoid the pattern ABBA.

As far as I know before Goulden-Jackson was invented there was the DFA-Method (Deterministic Finite Automaton also known as FSM, Finite State Machine.) My goal in this contribution was to study and implement this algorithm in order to gain insight about its features and how it influenced its powerful successor. It goes as follows for the case of a single pattern string: compute a DFA whose states represent the longest prefix of the pattern seen at the current position in the string as it is being scanned by the DFA, with the state for the complete pattern doubling as a final absorbing state, since the pattern has been seen. Translate the transitions of the DFA into a system of equations in the generating functions representing strings ending with a given maximal prefix of the pattern, very much like Markov chains. Finally solve the system of equations for the generating functions and thus obtain the sequence of values of strings of length n over the given alphabet that avoid the given pattern.

I have also implemented the DFA method for sets of patterns as opposed to just one pattern. The algorithm is the same except that the DFA does not consist of a chain with backlinks as in the case of a single pattern but a tree of prefixes with backlinks to nodes higher up in the tree. The nodes in the tree represent all prefixes that need to be tracked where obviously a common prefix between two or more patterns is shared i.e. only represented once. The DFA transitions emanating from nodes that are leaves represent absorbing states indicating that one of the patterns has been seen. We run this algorithm once it has been verified that the set of patterns does not contain pairs of patterns where one pattern is contained in another, which causes the longer pattern to be eliminated at the start. (Obviously if the shorter pattern is forbidden the so is the longer.) The number of states of the DFA here is bounded above by the sum of the lengths of the patterns with subpatterns eliminated. The uniqueness property of shared common prefixes holds for subtrees of the main tree i.e. recursively. (The DFA method also copes easily with patterns that have to occur in a certain order.)

I believe the Maple code that I provide here showcases many useful tricks and techniques and can help the reader advance in their Maple studies, which is why I am alerting you to the web link at MSE. I have deliberately aimed to keep it compatible with older versions of Maple as many of these are still in use in various places. The algorithm really showcases the power of Maple in combinatorics computing and exploits many different aspects of the software from the solution of systems of equations in rational generating functions to the implementation of data structures from computer science like trees. Did you know that Maple permits nested procedures as known to those who have met Lisp and Scheme during their studies? The program also illustrates the use of unit testing to detect newly introduced flaws in the code as it evolves in the software life cycle.

Enjoy and may your Maple skills profit from the experience!

Best regards,

Marko Riedel

The software is also available here: dfam-mult.txt

I have a Document that I have been putting together.  When I insert a Subsection into a section below the title I get a 1D-math input command symbol.  Is there a way to prevent this from happening?  I have not had this problem before. 

It appears there is something confused in the startup of the document because when I start a new document and this doesn't happen.

It's almost like when I insert the subsection it converts that part to a worksheet?????

     Example of the equidistant surface at a distance of 0.25 to the surface
x3
-0.1 * (sin (4 * x1) + sin (3 * x2 + x3) + sin (2 * x2)) = 0
Constructed on the basis of universal parameterization of surfaces.

equidistant_surface.mw 


i'm using maple in a research but i want to add a recursive function h_m(t) in 2 case : if m is integer positive and not, 
la formule est donnée comme suit :  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end; 
  if (mod(m,1) = 0  and m>0) then  h:=proc(m,t)  local  t ;  h[0,t]:=t ;   for  i from -4 to  m  by  2 do  h [m,t]:= h[0, t]-(GAMMA(i/(2)))/(2*GAMMA((i+1)/(2)))*cos(Pi*t)*sin(Pi*t)  od:  fi:  end;
and i wanna to know how to programmate a Gaus Hypegeometric function. Thank You

 

Dear all,

I am trying to solve the following system of equations by using dsolve, but I get the error:  error, (in RootOf) expression independent of, _Z, could you please help me to solve it. Thank you.

restart;
Digits := 20;
with(plots);
Nr := .1; Nb := .3; Nt := .1; Rb := 0; Lb := 1; Le := 10; Pe := 1; ss := .2; aa := .1; bb := .2; cc := .3; nn := 1.5;
Eq1 := nn.(diff(f(eta), eta))^(nn-1).(diff(f(eta), `$`(eta, 2)))-(nn+1)/(2.*nn+1).eta.(diff(theta(eta), eta)-Nr.(diff(h(eta), eta))-Rb.(diff(g(eta), eta))) = 0;
Eq2 := diff(theta(eta), `$`(eta, 2))+nn/(2.*nn+1).f(eta).(diff(theta(eta), eta))+Nb.(diff(theta(eta), eta)).(diff(h(eta), eta))+Nt.((diff(theta(eta), eta))^2) = 0;
Eq3 := diff(h(eta), `$`(eta, 2))+nn/(2.*nn+1).Le.f(eta).(diff(h(eta), eta))+Nt/Nb.(diff(theta(eta), `$`(eta, 2))) = 0;
Eq4 := diff(g(eta), `$`(eta, 2))+nn/(2.*nn+1).Lb.f(eta).(diff(g(eta), eta))-Pe.((diff(g(eta), eta)).(diff(h(eta), eta))+(diff(h(eta), `$`(eta, 2))).g(eta)) = 0;
etainf := 10;
bcs := f(0) = ss/Le.(D(h))(0), theta(0) = lambda+aa.(D(theta))(0), h(0) = lambda+bb.(D(h))(0), g(0) = lambda+cc.(D(g))(0), (D(f))(etainf) = 0, theta(etainf) = 0, h(etainf) = 0, g(etainf) = 0;
dsys := {Eq1, Eq2, Eq3, Eq4, bcs};
dsol := dsolve(dsys, numeric, continuation = lambda, output = procedurelist);
Error, (in RootOf) expression independent of, _Z

hi

how i can solve nonlinear differential equations with shooting method in maple?ω in equation is unknown...

thanks

eq.mw

dsys3 := {-0.326905829596411e-2*g(x)-(diff(g(x), x, x))-(diff(s(x), x))*(diff(s(x), x, x))-(4/3)*omega^2*g(x), -s(x)*omega^2-(-0.573628192993074e-1*sin(0.571756792348295e-1*x)-0.163452914798206e-2*cos(0.571756792348295e-1*x))*(diff(s(x), x))-(1.00327307112014*cos(0.571756792348295e-1*x)-0.285878396174148e-1*sin(0.571756792348295e-1*x)-1)*(diff(s(x), x, x))+0.220893539279189e-4*(diff(s(x), x, x, x, x))-(9/8)*(diff(s(x), x, x))*(diff(s(x), x))^2-(3/4)*(diff(s(x), x, x))*(diff(g(x), x))-(3/4)*(diff(s(x), x))*(diff(g(x), x, x)), (D(g))(1)+(1/2)*(D(s))(1)^2 = 0, g(0) = 0, s(0) = 0, (D(s))(0) = 0, ((D@@2)(s))(1) = 0, ((D@@3)(s))(1) = 0}

{-0.326905829596411e-2*g(x)-(diff(diff(g(x), x), x))-(diff(s(x), x))*(diff(diff(s(x), x), x))-(4/3)*omega^2*g(x), -s(x)*omega^2-(-0.573628192993074e-1*sin(0.571756792348295e-1*x)-0.163452914798206e-2*cos(0.571756792348295e-1*x))*(diff(s(x), x))-(1.00327307112014*cos(0.571756792348295e-1*x)-0.285878396174148e-1*sin(0.571756792348295e-1*x)-1)*(diff(diff(s(x), x), x))+0.220893539279189e-4*(diff(diff(diff(diff(s(x), x), x), x), x))-(9/8)*(diff(diff(s(x), x), x))*(diff(s(x), x))^2-(3/4)*(diff(diff(s(x), x), x))*(diff(g(x), x))-(3/4)*(diff(s(x), x))*(diff(diff(g(x), x), x)), (D(g))(1)+(1/2)*(D(s))(1)^2 = 0, g(0) = 0, s(0) = 0, (D(s))(0) = 0, ((D@@2)(s))(1) = 0, ((D@@3)(s))(1) = 0}

(1)

``

 

Download eq.mw

Hi

We know determinant of a square matrix A[ij] (i,j ∈ {1,2,3}) is equal to the following expression

det(A) = 1/6 * e[ijk] * e[pqr] * A[ip] * A[jq] * A[kr] 

in which e[ijk] is a third order Tensor (Permutation notation or Levi-Civita symbol) and has a simple form as follows:

e[mnr] = 1/2 * (m-n) * (n-r) * (r-m).

The (i,j) minor of A, denoted Mij, is the determinant of the (n − 1)×(n − 1) matrix that results from deleting row i and column j of A. The cofactor matrix of A is the n×n matrix C whose (i, j) entry is the (i, j) cofactor of A,

C[ij]= -1 i+j * M[ij]

A-1=CT/det(A)

The general form of Levi-Civita symbol is as bellow:

 

I want to write a program for finding inverse of (NxN) matrix:

N=2 →

restart;
N := 2:
with(LinearAlgebra):
f := (1/2)*(sum(sum(sum(sum((m-n)*(p-q)*A[m, p]*A[n, q], q = 1 .. 2), p = 1 .. 2), n = 1 .. 2), m = 1 .. 2)):
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((37*i^2+j^3)/(2*i+4*j)) end proc):
f/Determinant(A);

N=3 →

restart;
N := 3:
with(LinearAlgebra):
f := (1/24)*(sum(sum(sum(sum(sum(sum((m-n)*(n-r)*(r-m)*(p-q)*(q-z)*(z-p)*A[m, p]*A[n, q]*A[r, z], m = 1 .. N), n = 1 .. N), r = 1 .. N), p = 1 .. N), q = 1 .. N), z = 1 .. N)):
A := Matrix(N, N, proc (i, j) options operator, arrow; 10*i^2/(20*i+j) end proc):
f/Determinant(A);

The results of above programs are equal to 1 and validation of method is observed.

If we can write the general form of determinant then we can find the inverse of any square non-singular matrices.

Now I try to write the mentioned program.

restart;
with(linalg):
N := 7:
Digits := 40:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for i to N do
s[i] := sum(sum(s[i-1], a[i] = 1 .. N), b[i] = 1 .. N)
end do:
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((3*i+j)/(i+2*j)) end proc): # arbitrary matrix
CN:=simplify(s[N]/det(A));

Therefore det(A)= CN-1 * e[a1,a2,..an] * e [b1,b2,.., bn] * A[a1,b1] * A[a2,b2] * ... * A[an,bn].

The correction coefficient is CN(for N)/CN(for N-1) = N!/(N-1)! =N.

restart:
with(linalg): N := 4: Digits := 20:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for r to N do s[r] := sum(sum(s[r-1], a[r] = 1 .. N), b[r] = 1 .. N) end do:
A := Matrix(N, N, proc (i, j) options operator, arrow; evalf((3*i+2*j)/(i+2*j)) end proc):
DET:=S[N]:
for x to N do for y to N do
e := product(product(signum(a[j]-a[i]), j = i+1 .. N-1), i = 1 .. N-1):
ML := product(AA[a[k], b[k]], k = 1 .. N-1):
S[0, x, y] := e*subs(`$`(a[q] = b[q], q = 1 .. N-1), e)*ML:
for r to N-1 do S[r, x, y] := sum(sum(S[r-1, x, y], a[r] = 1 .. N-1), b[r] = 1 .. N-1) end do:
f[y, x] := (-1)^(x+y)*subs(seq(seq(AA[t, u] = delrows(delcols(A, y .. y), x .. x)[t, u], t = 1 .. N-1), u = 1 .. N-1), S[N-1, x, y])
end do: end do:
Matrix(N, N, f)/(DET)*(24/6);
A^(-1);

CN for N=4 and N=3 is 24 and 6 respectively i.e. CN(4)/CN(3)=24/6.

When I use bellow procedure the error "(in S) bad index into Matrix" is occurred.

Please help me to write this algorithm by using procedure.

Thank you 

restart; with(linalg): Digits := 40: n := 7:
S := proc (N) local e, ML, s, i:
e := product(product(signum(a[j]-a[i]), j = i+1 .. N), i = 1 .. N):
ML := product(A[a[k], b[k]], k = 1 .. N):
s[0] := e*subs(`$`(a[q] = b[q], q = 1 .. N), e)*ML:
for i to N do s[i] := sum(sum(s[i-1], a[i] = 1 .. N), b[i] = 1 .. N) end do
end proc:
A := Matrix(n, n, proc (i, j) options operator, arrow; evalf((3*i+j)/(i+2*j)) end proc): # arbitrary matrix
CN := simplify(S(n)/det(A))

with(Statistics):
X := RandomVariable(Normal(0, 1))

DensityPlot(X,filled=true)

I don't know why the plot doesn't produce a shaded plot.

 

Hi all,

I seem to be quite stuck on figuring out how to leave certain letters (e.g. planck's constant h) inside the equation without having to assign it as some particular number. 

What I am trying to do is find the value of a when the following equation is at a minimum:

E = (a*(h^2)/2m) + 0.3989422804/sqrt(a)

Here h and m are what I want to set as constants without actually setting them to h := 1 because I want a in terms of h and m. I have already found the derivative dE/da:

((h^2)/2m) - 0.1994711402/a^(3/2)

But I cannot use fsolve to find the value of a at the minimum because it keeps saying that h and m are variables and unsolved for.

Any help would be greatly appreciated.

How to solve following recurrence equation:

 

a(0)=2;

a(n+1)=a(n)+a(n)^2

 

I tried,but it doesn't work.

How to find the sequence an ?

Maple_worsheet.mw

Mariusz Iwaniuk

Below is a custom distribution created based on a function that takes a parameter.

It is possible to create the custom distribution e.g. as D1 and then use it afterwards to find e.g. Mean, but it is not possible to call Mean directly with the creation of the distribution in the call.

Why is that ?

First 1102 1103 1104 1105 1106 1107 1108 Last Page 1104 of 2224