Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Why does the following statement not evaluate, or better yet, how can I make it do so?

 

A:=value(floor(p)) assuming p>0,p<1,p::real;

or

A:=simplify(floor(p)) assuming p>0,p<1,p::real;

or any one of a lot of different attempts along the above lines, all of which seem (to me) that they should yield

A:=0

rather than

A:=floor(p)

which is what I get.

Thanks in advance

I write this system but I have 2 error

 

restart; params := [z = 0,

Omega = 2.2758,

tau = 13.8, T2 = 200,

omega0 = 1,

r = .7071,

s = 2.2758,

omega = .5]

 

sys1 := {diff(q(t), t) = -2*Omega*v(t)-s*exp(-r^2/omega0^2-t^2*1.177^2/tau^2)*cos(k*z-omega*t)*(y(t)-x(t))-q(t)/T2,

diff(v(t), t) = Omega*q(t)-v(t)/T2,

diff(x(t), t) = 2*s*exp(-r^2/omega0^2-t^2*1.177^2/tau^2)*cos(k*z-omega*t)*q(t)+y(t)/T1,

diff(y(t), t) = -2*s*exp(-r^2/omega0^2-t^2*1.177^2/tau^2)*cos(k*z-omega*t)*q(t)-y(t)/T1};

ICs1 := {q(-20) = 0, v(-20) = 0, x(-20) = 1, y(-20) = 0}

 

 

ans1 := dsolve(`union`(eval(sys1, params), ICs1), numeric, output = listprocedure); plots:-odeplot(ans1, [[t, x(t)], [t, y(t)], [t, q(t)], [t, v(t)]], t = -20 .. 20, legend = [x, y, q, v])

 

Error, invalid input: eval received params, which is not valid for its 2nd argument, eqns
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

The following integral is solved easily via a substitution. Why does Maple not evaluate it?


int(tan(x)^(1/3)*sec(x)^2, x)

int(tan(x)^(1/3)*sec(x)^2, x)

(1)

int(surd(tan(x), 3)*sec(x)^2, x)

int(surd(tan(x), 3)*sec(x)^2, x)

(2)

``


Download intsub.mw

I have theoretically 3(could eventually be more) layers with an incident wave with a wave equation for that wave.

It refracts into the 2nd layer from the first and now has a 2nd wave equation, then from the 2nd into the 3rd layer with a 3rd wave equation.

All the wave equations are of the form, Psi(z) = A_1psi_1(z) + B_1psi_2(z); this is just a general solution where psi_1&2 are linearly independant solutions that make up the general equation above and A_1 and B_1 are constant coefficients that would be A_2,B_2 and A_3,B_3 for the 2nd and 3rd layers respectively.

Transfer matrix method gives A_1,B_1 in terms of A_2,B_2(as it transfers from layer 1 to 2 they equate under boundary conditions so you can solve the simultaneous equations for results). You create a matrix of these results and multiply it with the respective matrix of the 2nd layer to 3rd layer to give you the overall transfer matrix from one side of the system to the other.

I think something to do with transfer function but not sure how to use it or set up the problem. 

Thanks in advance for any pointers.

 

Hi, 

Apologies if this is a very simple question and I am being a bit stupid, but how do I plot two functions of r on one graph, if they operate over different values of r? 

Say I have the functions:

FOO = r→APOT*exp(-r/rho)-CPOT/r^6+4*E2/r 

g = r→(c1*exp(d1*r)+c2*exp(d2*r)+c3*exp(d3*r)+c4*exp(d4*r))/r 

where FOO takes values of r between 0.5 and 2, and g takes values of r between o.2 and 0.5. 

 

Any help would be appreicated!

product.mw

Experts, I pose a question:

Separate the numbers 3,4,5,6,7,8,28,30,35 into three groups of three numbers each, so that the
product of the numbers in each group is equal.

The idea is to select numbers where the variance between the 3 groups is minimized.

my attempt doesn't get the anwer directly, there must be a better approach

f(f(z,a),b) = f(z, a + b) 

i googled this axiom is diff(x(t),t) = xi(f);

then i think 

diff(x(t),t$2) = xi(f);

is it f(f(f(z,a),b),c) = f(z, a + b+c) ?

then think again

whether  f(f(f(z,a),b),c) + f(f(z,a),b) = f(z, a + b+c)  is diff(x(t),t$2)+diff(x(t),t)= xi(f);

however do not know how to construct right hand side  f(z, a + b+c), this is my guess

any books teaching this?

 

i think that if any matrix group be created from  f(f(f(z,a),b),c) + f(f(z,a),b)

that can help to convert to differential equations

 

hope that there is a solvable group which can represent solvable differential equation or differential system

 

if xi is Infinitesimal in maple,

how to find Infinitesimal from f(f(z,a),b) = f(z, a + b) ?

How can I get and install grtensor for MAPLE12 on WIN7 32bit platform,

I tried with http://grtensor.phy.queensu.ca, downloaded grtii6.exe, now how to proceed further???

got error when draw root locus

and would like to know how to set feasibility tolerance, less than 0.1 is also ok

 

with(DynamicSystems):

x11 := [1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11 := [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11 := [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.59, 5.74, 5.49, 5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79];

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);

c1 := Diff(z1(t),t) = k8*x1(t)+ k9*y1(t)+ k10*z1(t)+k12*u1(t);

d1 := Diff(u1(t),t) = 0;

ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[27];

sol:=dsolve({a1,b1,c1,d1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);

X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));

tim := [seq(n, n=1..27)];

N:=nops(tim):

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);

 add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)

 end proc;

ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.001,.002,.003);

result1 := Optimization:-Minimize(ans,initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.001,.002,.003]);

x11 := [1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11 := [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11 := [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.59, 5.74, 5.49, 5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79];

k1 := result1[2][1];

k2 := result1[2][2];

k3 := result1[2][3];

k4 := result1[2][4];

k5 := result1[2][5];

k6 := result1[2][6];

k7 := result1[2][7];

k8 := result1[2][8];

k9 := result1[2][9];

k10 := result1[2][10];

k11 := result1[2][11];

k12 := result1[2][12];

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);

c1 := Diff(z1(t),t) = k8*x1(t)+ k9*y1(t)+ k10*z1(t)+k12*u1(t);

d1 := Diff(u1(t),t) = 0;

diff_eq := [a1, b1, c1, d1];

sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t), u1(t)], [x1(t), y1(t), z1(t), u1(t)]);

sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t)], [x1(t), y1(t), z1(t), u1(t)]);

ResponsePlot(sys6, Step(), parameters = params);

RootLocusPlot(sys6);

 

> sys6 := DiffEquation(diff_eq, [], [x1(t), y1(t), z1(t), u1(t)]);

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

> sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t), u1(t)], [x1(t), y1(t), z1(t), u1(t)]); sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t)], [x1(t), y1(t), z1(t), u1(t)]);

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

> ResponsePlot(sys6, Step(), parameters = params); RootLocusPlot(sys6);

Error, invalid input: DynamicSystems:-ResponsePlot expects value for keyword parameter parameters to be of type ({set, list})(name = complexcons), but received params

Error, (in Verify:-CommonExports) system object is not a module

 

Bonjour,

 

 

Je veux savoir comment augmenter la mémoire du maple sachant que j'ai un calculateur puissant (4 CPU de 2G pour chacun+2 RAM de 146 G pour chacune).

 

Merci d'avance,

Gérard.

How can I calculate GR tensors and geodesic equations for adS schwarzschild spacetime.

I've found the following project: http://www.parallella.org/

It is a very cheap but impressive computer ( 64-cores, they say it gives about 90 GFLOPS of computing power). The problem is the very limited amount of memory (1GB). See: http://www.parallella.org/board/ for specifications.

Now my question is: do you think Maple will run on this machine (acoording to the site it will run Ubuntu) and if so then does it make sense to try it given the small amount of memory it has? Or in another words: do there exist problems that could be solved by Maple on this powerful machine and that cannot be solved on a regular machine with let's say 4GB of RAM?

Hello everybody

I'm new at using Maple

so what I'm trying to do is " solve system of differential equations numerically " and plot the result 

I use the floweing code

 

PDEtools[declare]((u, v, w)(t), prime = t)

> params := z = 0;

Omega= 2.2758;

tau = 13.8;

T2 = 200; s = 1;

r = 0.7071;

\[CapitalDelta] = 1.7758;

s = 2.2758;

Eta= 1.05457173*10^-34;

omega = 0.5; k = 1666666.667;

> sys1 := {diff(u(t), t) = Omega*v(t)-u(t)/T2,

diff(v(t), t) = -Omega*u*{t}-2*s*exp(-r^2/omega0^2-t^2*1.177^2/tau^2)*cos(k*z-omega*t)*w(t)-v(t)/T2,

diff(w(t), t) = 2*s*exp(-r^2/omega0^2-t^2*1.177^2/tau^2)*cos(k*z-omega*t)*v(t)};

Cs1 := {u(-20) = 0, v(-20) = 0, w(-20) = -1}

> ans1 := dsolve*RealRange(Open({ICs1, sys1}), {u(t), v(t), w(t)});
%;
Error, (in RealRange) invalid arguments

plot([u(t),t=-20..20])
plot([v(t),t=-20..20])
plot([w(t),t=-20..20])

 

 

:::::::::

also I need to use the result of v(t) in another equation as,

x=2*v(t)*cos(k*z-omega*t)

How I can do that ?

 

Hello,

I was wondering if I can call Matlab R2012b with maple 14 on my macos 10.7.5.

When I try to do this:

> Matlab[setvar]("x", 3.14);

I get this:


Error, (in Matlab:-setvar) there was a problem finding or loading matlink.so. Refer to ?Matlab,setup for help configuring your system to work with the Matlab-link.

I read that I may have to change a script. Where are those scripts located?

Regards,

Three families grow vegetables in their backyards,and agree to form a small closed economy by sharing their produce. family andrews grow artichokes, family brown grows beans and family Cuthbert grows corn.Family Andrews receives 70% of its artichokes, 30% of the beans and 30% of the corn.Family Brown receives 20% of the artichokes,60% of the beans and 10% of thr corn.Family Cuthbert receives the remainder of the vegetables.

a) Write down the exchange matrix A.

b) If production is measured in doolars ,define the variables
                                    x[1]
,
                                    x[2]
,
                                    x[3]
 of the production vector X.

c) Find all solution of the Leontief closed with matrix equation (I-A)^-1¤X=0.

d) If family Cuthbert produces $100 worth of corn, how much will familes Andrews and Brown need to produce (in dollars) in order foe the economy to be in equilibrium?

First 1388 1389 1390 1391 1392 1393 1394 Last Page 1390 of 2224