Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi, I am working on a bification diagram and was wondering if there is a way to plot the stable and unstable curves onto one figure.

I have two curves, if the eq1<eq2 I would like to indicate when this happens, with a dashed line.

When eq1>eq3 I would like to indicate this with a soild line.

implicitplot, x[m] vs x[u] with axis[2]=[mode=log] 

r:=0.927: K:=1.8182*10^8:d[v]:=0.0038:d[u]:=2: delta:=1: p[m]:=2.5: M:=10^4: p[e]:=0.4: d[e]:=0.1: d[t]:=5*10^(-9): omega:=2.042: b:=1000: h[e]:=1000:h[u]:=1:h[v]:=10^4:

eq1 := r*d[t]*h[e]*x[u]^3+(r*h[e]*(-K*d[t]+d[t]*h[v]+d[e])+r*p[e]*x[m])*x[u]^2+(r*h[e]*(-K*d[t]*h[v]-K*d[e]+d[e]*h[v])+K*p[e]*(d[u]-r)*x[m])*x[u]-r*K*h[e]*d[e]*h[v];

eq2 := (d[t]*x[u]+d[e])*(2*r*x[u]/K+d[u]*p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])*(h[e]+p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e]))))-r)+d[u]*h[e]*x[u]*(p[e]*h[v]*x[m]/(h[v]+x[u])^2-d[t]*p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])))/(h[e]+p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])))^2

i have matrix M depend on x1 x2 x3 .... want limit of M. for sure can use loop like M[i,j]:=limit(M[i,j],[x1=0,x2=0,...]; i=1.. j=1..

want use map2 to do all at same time, try map2(limit,[x1=0,x2=0],M); gives error

Error, invalid input: limit expects its 1st argument, expr, to be of type Or(equation, algebraic), but received [x1 = 0, x2 = 0]

is possible to do using map or other thing not loop

 

Consider the family of functions "{`f__n`   : -infinity< n<infinity}," where the index n is
integer, and f__n; proc (R) options operator, arrow; R end proc.   It is known that diff(f__n(x), x) = `f__n-1`(x) for all n.

 

I want to convey that information to Maple.  For instance, given the input
diff(f[3](x),x), Maple should return f__2(x).  Similarly:
diff(f[3](x), x$2)                   should return   f__1(x)
f[4](x)*diff(f[3](x),x)^5   should return   f__4(x)*f__2(x)^5

What is a good way of doing that?

 

@ianmccr posted here about making help for a package using makehelp. Here I show how to do this with the HelpTools package.

The attached worksheet shows how to create the help database for the Orbitals package available at the Applications Center or in the Maple Cloud. The help pages were created as worksheets - start using an existing help page as a model - use View/Open Page As Worksheet and then save from there. The topics and other information are entered by adding Attributes under File/Document Properties - for example for the realY help page these are:

Active=false means a regular help page; Active=true means an example worksheet.

There may be several aliases, for example the cartesion help page also describes the fullcartesian command and so Alias is: Orbitals[fullcartesian],cartesian,fullcartesian and Keyword is: Orbitals,cartesian,fullcartesian

Once a worksheet is created for each help page they are assembled into the help database with the attached file. More information is in the attached file

Orbitals_Make_help_database.mw

Hello,

I have tried to get a simple matlab example of a fourier transform code to work in Maple. This is just to understand a simple fourier transform and eventually try some more difficult 2D transforms.

restart:
with(LinearAlgebra):
with(RandomTools):
with(orthopoly):
with(plots):
with(ArrayTools):
with(DiscreteTransforms):
Digits:=15:

# 1D Fourier Transform

Fs := 1000;                       # Sampling frequency                    
T := 1/Fs;                        # Sampling period       
L := 1500;                        # Length of signal
t := Vector(L, i -> i-1)*T:       # Time vector

f := Fs*Vector(floor(L/2)+1, i-> i-1)/L:   # Frequency                 


S:= Vector(L, i -> 0.7*sin(2.0*Pi*50*t[i]) + sin(2.0*Pi*120*t[i])):    # Signal


Z1 := FourierTransform(Vector(L, j->S[j])):              # DFT 
Z2 := Vector(L, i-> sqrt(Re(Z1[i])**2 + Im(Z1[i])**2)):  # Amplitude
                

FP1 := pointplot({seq([f[n],Z2[n]],n=1..floor(L/2)+1)}, labels=["Frequency","Amplitude"], connect=true, color=green):

display(FP1, axes=boxed);

The right answer should be a plot with frequencies at 50Hz and 120Hz, with amplitudes at 0.7 and 1.0, respectively. However my amplitude axes is off somehow and I don't understand why. 

Hello!

Could you help me please to plot a fuction with domain and complex range (Maple 2020.1). For example:

f := (x, w) -> exp(w*x*I)

x,w are real numbers

 

Hello!

I've just want to use indexes in functions, like this (Maple 2020.1)

f[l,m]:=(x,y)->x^k + y^m

But I can't get the result of it:

f[1,1](2,2)

Maple show me not 4, but the same function.

Hi, am trying to differentiate the following eq w.r.t t2 and N. But in t2 I am getting zero and in wrt N, an Error (non-algebraic expressions cannot be differentiated). But according to the article, I am following expression should come.

I am differentiating following

TCS := proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc

ode5 := diff(proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc, t__2) = 0

ode6 := diff(proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc, N) = 0

Error, non-algebraic expressions cannot be differentiated
 

following are the pre-requisite to use above (also in the attachment doubt_2.mw)

i__m1(t) = ((-c*t^2*theta__m^2+b*t*theta__m^2+2*c*t*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t)

i__m2(t) = (-(-c*t^2*theta__m^2+b*t*theta__m^2+2*c*t*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3)*exp(-theta__m*t)

TC__m := A__m/(t__1+t__2)+(int(h__m*(i__m*t+1)*i__m1(t), t = 0 .. t__1))*(int(h__m*(i__m*t+1)*i__m2(t), t = 0 .. t__2))+P__m*I__om*m*(-(1/3)*a*c*N^alpha*M^3+(1/2)*a*b*N^alpha*M^2+a*N^alpha*M)/(t__1+t__2)+C__m*theta__m*(int(i__m1(t), t = 0 .. t__1)+int(i__m2(t), t = 0 .. t__2))/(t__1+t__2)

i__d(t) = (-(-c*t^2*theta__d^2+b*t*theta__d^2+2*c*t*theta__d-b*theta__d+theta__d^2-2*c)*a*N^alpha*exp(theta__d*t)/theta__d^3+(-c*t__3^2*theta__d^2+b*t__3*theta__d^2+2*c*t__3*theta__d-b*theta__d+theta__d^2-2*c)*a*N^alpha*exp(theta__d*t__3)/theta__d^3)*exp(-theta__d*t)

TC__d1 := A__d*m/(t__1+t__2)+m*(int(h__d*(i__d*t+1)*i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__d*I__OD*m*n*(-(1/3)*a*c*N^alpha*N^3+(1/2)*a*b*N^alpha*N^2+a*N^alpha*N)/(t__1+t__2)+P__m*theta__m*m*(int(i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__m*I__c*m*(int(i__d(t), t = M .. t__3))/(t__1+t__2)-P__d*I__e*m*(-(1/3)*a*c*N^alpha*M^3+(1/2)*a*b*N^alpha*M^2+a*N^alpha*M)/(t__1+t__2)

TC__d2 := A__d*m/(t__1+t__2)+m*(int(h__d*(i__d*t+1)*i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__d*I__OD*m*n*(-(1/3)*a*c*N^alpha*N^3+(1/2)*a*b*N^alpha*N^2+a*N^alpha*N)/(t__1+t__2)+P__m*theta__m*m*(int(i__d(t), t = 0 .. t__3))/(t__1+t__2)-P__d*I__e*m*(-(1/4)*a*c*N^alpha*t__3^4+(1/3)*a*b*N^alpha*t__3^3+(1/2)*a*N^alpha*t__3^2+M-t__3-(1/3)*a*c*N^alpha*t__3^3+(1/2)*a*b*N^alpha*t__3^2+a*N^alpha*t__3)/(t__1+t__2)

i__r(t) = (-(-c*t^2*theta__r^2+b*t*theta__r^2+2*c*t*theta__r-b*theta__r+theta__r^2-2*c)*a*N^alpha*exp(theta__r*t)/theta__r^3+(-c*t__4^2*theta__r^2+b*t__4*theta__r^2+2*c*t__4*theta__r-b*theta__r+theta__r^2-2*c)*a*N^alpha*exp(theta__r*t__4)/theta__r^3)*exp(-theta__r*t)

TC__r1 := A__r*m*n/(t__1+t__2)+m*n*(int(h__r*(i__r*t+1)*i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*theta__r*m*n*(int(i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*I__c*m*n*(int(i__r(t), t = N .. t__4))/(t__1+t__2)-P__r*I__e*m*n*(-(1/4)*a*c*N^alpha*N^4+(1/3)*a*b*N^alpha*N^3+(1/2)*a*N^alpha*N^2)/(t__1+t__2)

TC__r2 := A__r*m*n/(t__1+t__2)+m*n*(int(h__r*(i__r*t+1)*i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*theta__r*m*n*(int(i__r(t), t = 0 .. t__4))/(t__1+t__2)-P__r*I__e*m*n*(-(1/4)*a*c*N^alpha*t__4^4+(1/3)*a*b*N^alpha*t__4^3+(1/2)*a*N^alpha*t__4^2+N-t__4-(1/3)*a*c*N^alpha*t__4^3+(1/2)*a*b*N^alpha*t__4^2+a*N^alpha*t__4)/(t__1+t__2)

TCS__1 := TC__m+TC__d1+TC__r1

TCS__2 := TC__m+TC__d1+TC__r2

TCS__3 := TC__m+TC__d2+TC__r1

TCS__4 := TC__m+TC__d2+TC__r2

 

Thanks in advance.

Hi,

I want to solve an equation(see the attached file) numerically, find  values of M that satisfy this equation and then plot the curve of M versus sigmai for those values of M that satisfy the mentioned equation. How can I do that with Maple?

 

eq.mw

MacDude posted a worksheet for creating help files using the makehelp command that I found very useful.  However, his worksheet created a table of contents that organized the command help pages under a single folder.  I wanted to create a help file table of contents with the commands organized into sub-folders under the main application folder. ie. Package Name,Folder Name, command. The help page for makehelp is not very informative; in particular the example that shows (purportedly) how to override the existing help pages with your own help file is very misleading.  Also, the description of the parameters to the browser option of the makehelp command is too vague. I needed an error message to tell me that the browser option expects parameters in the form List(Name,String).  In the end, I was able to get a folder/sub-folder structure using a structure [`Folder Name`,`Subfolder Name`,"Command"].  Sub-folders are sorted alphabetically. If anyone has a need, the attached worksheet shows how I created the table of contents structure. 

helpcode.mw

In the OrthogonalExpansions package, how can I change the summation variable to be n instead of i?


doubt_1.mw

Hi, I am trying to solve two simultaneous equations (for t1) they are as follows-

eq 1

i__m2(0) = (-(-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(0)*a*N^alpha/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3+(-c*t__2^2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+b*t__2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+2*c*t__2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__2)*a*N^alpha/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3)*exp(0)

eq 2

i__m1(t__1) = ((-c*t__1^2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+b*t__1*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+2*c*t__1*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__1)*a*N^alpha*(lambda-1)/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3-(-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*a*N^alpha*(lambda-1)/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3)*exp(-`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__1)

rhs(i__m2(0) = (-(-b*theta__m+theta__m^2-2*c)*exp(0)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3)*exp(0)) = rhs(i__m1(t__1) = ((-c*t__1^2*theta__m^2+b*t__1*theta__m^2+2*c*t__1*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__1)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t__1))

solve({-(-b*theta__m+theta__m^2-2*c)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3 = ((-c*t__1^2*theta__m^2+b*t__1*theta__m^2+2*c*t__1*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__1)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t__1)}, [t__1]);
Warning, solutions may have been lost
 

Can someone, please help. Thanks in advance.

Any idea why a similar indexing call to an Array and a Matrix gives different "orientations"?

The indexing call [1..2,1] to a Matrix gives a a column Vector, while a similar call to an Array gives a (row) Array. So somehow the Array call gives a transpose of the original.

MatrixVsArray.mw

I have used maple to solve a system of differential equations. However, I need to do the same in R. The problem is that when I use the same parameter values as used in maple to R, I don't get the same plots. Can someone assist wrt? 

The definition 
a:=ModularSquareRoot(10,11)
returns
Error, ... because no numbers in Z11 have the square equal to 10. I need, in a procedure, to prevent the error, I mean something like this:
if a<>ERROR then b:=b+1 else c:=c+1 end if
Any suggestions? Thanks

First 525 526 527 528 529 530 531 Last Page 527 of 2224